PageRank算法原理与实现

简介: PageRank算法原理与实现

1 PageRank


1.1 简介


PageRank,又称网页排名、谷歌左侧排名,是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。


假设一个由4个网页组成的群体:A,B,C和D。如果所有页面都只链接至A,那么A的PR(PageRank)值将是B,C及D的Pagerank总和。


65.png


重新假设B链接到ACC只链接到A,并且D链接到全部其他的3个页面。一个页面总共只有一票。所以BAC每个页面半票。以同样的逻辑,D投出的票只有三分之一算到了A的PageRank上。


66.png


1.2 公式


对于一个页面A,那么它的PR值为:


67.png

  • PR(A) 是页面A的PR值
  • PR(Ti)是页面Ti的PR值,在这里,页面Ti是指向A的所有页面中的某个页面
  • C(Ti)是页面Ti的出度,也就是Ti指向其他页面的边的个数
  • d 为阻尼系数,其意义是,在任意时刻,用户到达某页面后并继续向后浏览的概率,该数值是根据上网者使用浏览器书签的平均频率估算而得,通常d=0.85


还有一个版本的公式:


68.png


N为页面的总数


1.3 具体实例


69.png

三个页面A、B、C


为了便于计算,我们假设每个页面的PR初始值为1,d为0.5。

  • 页面A的PR值计算如下:

70.png

  • 页面B的PR值计算如下:

71.png

  • 页面C的PR值计算如下:

72.png


下面是迭代计算12轮之后,各个页面的PR值:


73.png



那么什么时候,迭代结束哪?一般要设置收敛条件:比如上次迭代结果与本次迭代结果小于某个误差,我们结束程序运行;比如还可以设置最大循环次数


2 代码实现



import numpy as np
from scipy.sparse import csc_matrix
def pageRank(G, s=.85, maxerr=.0001):
    """
    Computes the pagerank for each of the n states
    Parameters
    ----------
    G: matrix representing state transitions
       Gij is a binary value representing a transition from state i to j.
    s: probability of following a transition. 1-s probability of teleporting
       to another state.
    maxerr: if the sum of pageranks between iterations is bellow this we will
            have converged.
    """
    n = G.shape[0]
    # 将 G into 马尔科夫 A
    A = csc_matrix(G, dtype=np.float)
    rsums = np.array(A.sum(1))[:, 0]
    ri, ci = A.nonzero()
    A.data /= rsums[ri]
    sink = rsums == 0
    # 计算PR值,直到满足收敛条件
    ro, r = np.zeros(n), np.ones(n)
    while np.sum(np.abs(r - ro)) > maxerr:
        ro = r.copy()
        for i in range(0, n):
            Ai = np.array(A[:, i].todense())[:, 0]
            Di = sink / float(n)
            Ei = np.ones(n) / float(n)
            r[i] = ro.dot(Ai * s + Di * s + Ei * (1 - s))
    # 归一化
    return r / float(sum(r))
if __name__ == '__main__':
    # 上面的例子
    G = np.array([[0, 0, 1],
                  [1, 0, 0],
                  [1, 1, 0]])
    print(pageRank(G, s=0.85))
# 结果:
[0.51203622 0.19313191 0.29483187]


3 参考资料


Pagerank Algorithm Explained

【大创_社区划分】——PageRank算法的解析与Python实现

浅入浅出:PageRank算法

PageRank

相关文章
|
22天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
101 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
30天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
2月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
1月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
75 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
83 4
|
2月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
103 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
2月前
|
JSON 算法 数据挖掘
基于图论算法有向图PageRank与无向图Louvain算法构建指令的方式方法 用于支撑qwen agent中的统计相关组件
利用图序列进行数据解读,主要包括节点序列分析、边序列分析以及结合节点和边序列的综合分析。节点序列分析涉及节点度分析(如入度、出度、度中心性)、节点属性分析(如品牌、价格等属性的分布与聚类)、节点标签分析(如不同标签的分布及标签间的关联)。边序列分析则关注边的权重分析(如关联强度)、边的类型分析(如管理、协作等关系)及路径分析(如最短路径计算)。结合节点和边序列的分析,如子图挖掘和图的动态分析,可以帮助深入理解图的结构和功能。例如,通过子图挖掘可以发现具有特定结构的子图,而图的动态分析则能揭示图随时间的变化趋势。这些分析方法结合使用,能够从多个角度全面解读图谱数据,为决策提供有力支持。
130 0