卷积神经网络(CNN)介绍与实践(一)

简介: 卷积神经网络(CNN)介绍与实践(一)

1 CNN的前生今世


1.1 大脑

作为人类,我们不断地通过眼睛来观察和分析周围的世界,我们不需要刻意的“努力”思考,就可以对所看到的一切做出预测,并对它们采取行动。当我们看到某些东西时,我们会根据我们过去学到的东西来标记每个对象。为了说明这些情况,请看下面这张图片:


81.png

资料来源:https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050


你可能会想到“这是一个快乐的小男孩站在椅子上”。或者也许你认为他看起来像是在尖叫,即将在他面前攻击这块蛋糕。


这就是我们整天下意识地做的事情。我们看到事物,然后标记,进行预测和识别行为。但是我们怎么做到这些的呢?我们怎么能解释我们看到的一切?


大自然花费了5亿多年的时间来创建一个系统来实现这一目标。眼睛和大脑之间的合作,称为主要视觉通路,是我们理解周围世界的原因。

82.png

视觉通路。- 来源:https://commons.wikimedia.org/wiki/File : Human_visual_pathway.svg


虽然视力从眼睛开始,但我们所看到的实际解释发生在大脑的初级视觉皮层中

当您看到一个物体时,您眼中的光感受器会通过视神经将信号发送到正在处理输入的主视觉皮层。在初级视觉皮层,使眼睛看到的东西的感觉。


所有这一切对我们来说都很自然。我们几乎没有想到我们能够识别我们生活中看到的所有物体和人物的特殊性。神经元和大脑连接的深层复杂层次结构在记忆和标记物体的过程中起着重要作用。


想想我们如何学习例如伞是什么。或鸭子,灯,蜡烛或书。一开始,我们的父母或家人告诉我们直接环境中物体的名称。我们通过给我们的例子了解到。慢慢地,但我们开始在我们的环境中越来越多地认识到某些事情。它们变得如此普遍,以至于下次我们看到它们时,我们会立即知道这个物体的名称是什么。他们成为我们世界的模型一部分。


1.2 卷积神经网络的历史


与孩子学会识别物体的方式类似,我们需要在能够概括输入并对之前从未见过的图像进行预测之前,展示数百万张图片的算法。


计算机以与我们不同的方式“看到”东西的。他们的世界只包括数字。每个图像都可以表示为二维数字数组,称为像素。


但是它们以不同的方式感知图像,这一事实并不意味着我们无法训练他们的识别模式,就像我们一样如何识别图像。我们只需要以不同的方式思考图像是什么。

83.png

计算机如何看到图像。- 来源:http://cs231n.github.io/classification/


为了“教会”一种算法如何识别图像中的对象,我们使用特定类型的人工神经网络:卷积神经网络(CNN)。他们的名字源于网络中最重要的一个操作:卷积

卷积神经网络受到大脑的启发。DH Hubel和TN Wiesel在20世纪50年代和60年代对哺乳动物大脑的研究提出了哺乳动物如何在视觉上感知世界的新模型。他们表明猫和猴的视觉皮层包括在其直接环境中专门响应神经元的神经元。


在他们的论文中,他们描述了大脑中两种基本类型的视觉神经元细胞,每种细胞以不同的方式起作用:简单细胞(S细胞)和复合细胞(C细胞)。


例如,当简单单元格将基本形状识别为固定区域和特定角度的线条时,它们就会激活。复杂细胞具有较大的感受野,其输出对野外的特定位置不敏感。

复杂细胞继续对某种刺激做出反应,即使它在视网膜上的绝对位置发生变化。在这种情况下,复杂指的是更灵活。


视觉中,单个感觉神经元的感受区域是视网膜的特定区域,其中某些东西将影响该神经元的发射(即,将激活神经元)。每个感觉神经元细胞都有相似的感受野,它们的田地覆盖着。

84.png

神经元的感受野。- 来源:http://neuroclusterbrain.com/neuron_model.html

此外,层级【hierarchy 】的概念在大脑中起着重要作用。信息按顺序存储在模式序列中。的新皮层,它是大脑的最外层,以分层方式存储信息。它存储在皮质柱中,或者在新皮层中均匀组织的神经元分组。


1980年,一位名为Fukushima的研究员提出了一种分层神经网络模型。他称之为新认知。该模型的灵感来自简单和复杂细胞的概念。neocognitron能够通过了解物体的形状来识别模式。


后来,1998年,卷心神经网络被Bengio,Le Cun,Bottou和Haffner引入。他们的第一个卷积神经网络称为LeNet-5,能够对手写数字中的数字进行分类。

85.png

LeNet-5网络 示意图1


86.png

LeNet-5网络 示意图2


2 卷积神经网络


卷积神经网络(Convolutional Neural Network)简称CNN,CNN是所有深度学习课程、书籍必教的模型,CNN在影像识别方面的为例特别强大,许多影像识别的模型也都是以CNN的架构为基础去做延伸。另外值得一提的是CNN模型也是少数参考人的大脑视觉组织来建立的深度学习模型,学会CNN之后,对于学习其他深度学习的模型也很有帮助,本文主要讲述了CNN的原理以及使用CNN来达成99%正确度的手写字体识别。

CNN的概念图如下:


87.png

CNN概念图1


88.png

CNN概念图2


89.png

CNN概念图3


从上面三张图片我们可以看出,CNN架构简单来说就是:图片经过各两次的Convolution, Pooling, Fully Connected就是CNN的架构了,因此只要搞懂Convolution, Pooling, Fully Connected三个部分的内容就可以完全掌握了CNN!


2.1  Convolution Layer卷积层


卷积运算就是将原始图片的与特定的Feature Detector(filter)做卷积运算(符号),卷积运算就是将下图两个3x3的矩阵作相乘后再相加,以下图为例0 *0 + 0*0 + 0*1+ 0*1 + 1 *0 + 0*0 + 0*0 + 0*1 + 0*1 =0

90.png

卷积运算 1


每次移动一步,我们可以一次做完整张表的计算,如下:

91.png

卷积运算 2


下面的动图更好地解释了计算过程:

92.png

左:过滤器在输入上滑动。右:结果汇总并添加到要素图中。


中间的Feature Detector(Filter)会随机产生好几种(ex:16种),Feature Detector的目的就是帮助我们萃取出图片当中的一些特征(ex:形状),就像人的大脑在判断这个图片是什么东西也是根据形状来推测


93.png

16种不同的Feature Detector


利用Feature Detector萃取出物体的边界


94.png

利用Feature Detector萃取出物体的边界


使用Relu函数去掉负值,更能淬炼出物体的形状

95.png

Relu函数去掉负值


96.png

淬炼出物体的形状1


97.png

淬炼出物体的形状2


我们在输入上进行了多次卷积,其中每个操作使用不同的过滤器。这导致不同的特征映射。最后,我们将所有这些特征图放在一起,作为卷积层的最终输出。


就像任何其他神经网络一样,我们使用激活函数使输出非线性。在卷积神经网络的情况下,卷积的输出将通过激活函数。这可能是ReLU激活功能


98.png

其他函数


这里还有一个概念就是步长Stride是每次卷积滤波器移动的步长。步幅大小通常为1,意味着滤镜逐个像素地滑动。通过增加步幅大小,您的滤波器在输入上滑动的间隔更大,因此单元之间的重叠更少。


下面的动画显示步幅大小为1。


99.png

步幅为1


由于feature map的大小始终小于输入,我们必须做一些事情来防止我们的要素图缩小。这是我们使用填充的地方。


添加一层零值像素以使用零环绕输入,这样我们的要素图就不会缩小。除了在执行卷积后保持空间大小不变,填充还可以提高性能并确保内核和步幅大小适合输入。


可视化卷积层的一种好方法如下所示,最后我们以一张动图解释下卷积层到底做了什么


100.png


卷积如何与K = 2滤波器一起工作,每个滤波器具有空间范围F = 3,步幅S = 2和输入填充P = 1. - 来源:http://cs231n.github.io/convolutional-networks/

相关文章
|
7天前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
29 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
7天前
|
数据采集 网络协议 算法
移动端弱网优化专题(十四):携程APP移动网络优化实践(弱网识别篇)
本文从方案设计、代码开发到技术落地,详尽的分享了携程在移动端弱网识别方面的实践经验,如果你也有类似需求,这篇文章会是一个不错的实操指南。
20 1
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
3天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
14 2
|
4天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。
|
3天前
|
存储 安全 网络安全
云计算与网络安全:探索云服务中的信息安全策略
【10月更文挑战第39天】随着云计算的飞速发展,越来越多的企业和个人将数据和服务迁移到云端。然而,随之而来的网络安全问题也日益突出。本文将从云计算的基本概念出发,深入探讨在云服务中如何实施有效的网络安全和信息安全措施。我们将分析云服务模型(IaaS, PaaS, SaaS)的安全特性,并讨论如何在这些平台上部署安全策略。文章还将涉及最新的网络安全技术和实践,旨在为读者提供一套全面的云计算安全解决方案。
|
3天前
|
存储 安全 网络安全
网络安全与信息安全:漏洞、加密技术与安全意识的交织
【10月更文挑战第39天】在数字化时代,网络安全与信息安全成为保护个人隐私和组织资产的重要屏障。本文将探讨网络安全中的常见漏洞、加密技术的应用以及提升安全意识的重要性。通过具体案例分析,我们将深入了解网络攻击的手段和防御策略,同时提供实用建议,以增强读者对网络安全的认识和防护能力。
|
3天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将探讨网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和建议来保护个人信息和设备安全。

热门文章

最新文章