【人工智能】机器学习之用Python实现最小二乘法进行房价预测以及进行贷款额度预测

简介: 使用最小二乘法进行房价预测:首先明白什么是最小二乘法,利用最小二乘法公式

1.使用最小二乘法进行房价预测:

给定训练样本集合如下:

在这里插入图片描述

求解:当房屋面积为55平方时,租赁价格是多少?给出代码与运行结果图。

首先明白什么是最小二乘法,利用最小二乘法公式

p = (X^TX)^-1 X^T Y
import numpy as np
from numpy import mat
import matplotlib.pyplot as plt

if __name__ == "__main__":
    # 1 获得x,y数据#  ##########
    X = np.array([10, 15, 20, 30, 50, 60, 60, 70])
    y = np.array([0.8, 1, 1.8, 2, 3.2, 3, 3.3, 3.5])
    plt.scatter(X, y)
    plt.show()
    # 2 矩阵形式转换X, Y
    Y_mat = mat(y).T
   # print(Y_mat)
    X_temp = np.ones((8, 2))
    #print(X_temp)
    X_temp[:, 0] = X
   # print(X_temp)
    X_mat = mat(X_temp)
    #print(X_mat)
    # 3 利用解析法 p = (X^TX)^-1 X^T Y
    pamaters = (((X_mat.T)*X_mat).I) * X_mat.T*Y_mat
    ¥print(pamaters)
    # 4  显示
    predict_Y = X_mat * pamaters
   # print(predict_Y)
    plt.figure()
    plt.scatter(X, y, c="blue")
    plt.plot(X, predict_Y, c="red")
    plt.title("房价预测图")  # 设置图表标题
    plt.xlabel("房屋面积(m^2)")  # 设置x坐标轴标签
    plt.ylabel("租赁价格(1000$)")  # 设置y坐标轴标签
    plt.rcParams['font.sans-serif'] = ['Kaiti']  # 用来正常显示中文(黑体)常用字体包括: Kaiti-楷体; FangSong-仿宋; Microsoft YaHei-微软雅黑
    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
    plt.show()
    s = input("请输入房屋面积:")
    #print(s)
    s_temp = np.ones((1, 2))
    s_temp[:, 0] = s
    #print(s_temp)
    s_mat = mat(s_temp)
    z = s_mat * pamaters
    print("租赁价格为:", z)

散点图和折线图
在这里插入图片描述
输入房屋面积即可得出租赁价格!

2. 使用最小二乘法进行贷款额度预测:

给定训练样本集合如下:
在这里插入图片描述

求解:当工资18000、年龄30时,额度是多少?给出代码与运行结果图

难点在于有两个参数
画三维图需要引入mpl_toolkits.mplot3d

最小二乘法公式不变

 p = (X^TX)^-1 X^T Y

在画图时要分别为x,y,z轴赋值,并写上坐标标签,由于数据的小数位太多,超出位数范围会报错,所以要将小数变为整数!

import numpy as np
from numpy import mat
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D     # 画三维图

if __name__ == "__main__":
    # 1 获得x,y数据#  ##########
    X = np.array([[4000, 25], [8000, 30], [5000, 28], [7500, 33], [12000, 40]])
    Y = np.array([20000, 70000, 35000, 50000, 85000])


    # 2 矩阵形式转换X, Y
    Y_mat = mat(Y).T

    X_temp = np.ones((5, 3))
    X_temp[:, 0] = X[:, 0]
    X_temp[:, 1] = X[:, 1]
    #print(X_temp)
    X_mat = mat(X_temp)
   # print(X_mat)
    # 3 利用解析法 p = (X^TX)^-1 X^T Y
    pamaters = (((X_mat.T) * X_mat).I) * X_mat.T * Y_mat
    #print(pamaters)
    # 4 显示
    fig1 = plt.figure()
    ax1 = Axes3D(fig1)
    x = X[:, 0]
    y = X[:, 1]
    z = Y
    Z = X_mat * pamaters
    #print(Z)
    n = list(map(int, Z[:, 0]))   # Z中的数的位数超出范围
    #print(n)
    ax1.scatter3D(x, y, z, c='blue')
    ax1.plot3D(x, y, n, c='red')
    plt.title("贷款额度预测图")  # 设置图表标题
    plt.xlabel("工资")  # 设置x坐标轴标签
    plt.ylabel("年龄")  # 设置y坐标轴标签
    ax1.set_zlabel("额度")# 设置z坐标标签
    plt.rcParams['font.sans-serif'] = ['Kaiti']  # 用来正常显示中文(黑体)常用字体包括: Kaiti-楷体; FangSong-仿宋; Microsoft YaHei-微软雅黑
    plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
    plt.show()

    a = eval(input("请输入工资:"))
    b = eval(input("请输入年龄: "))
    s = np.array([[a, b]])
   # print(s)
    s_temp = np.ones((1, 3))
    s_temp[:, 0] = s[:, 0]
    s_temp[:, 1] = s[:, 1]
    #print(s_temp)
    s_mat = mat(s_temp)
    m = s_mat * pamaters
    print("贷款额度为:", m)

三维散点和折线图

在这里插入图片描述
输入工资和年龄即可输出贷款额度!

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
130 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
347 55
|
3月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
42 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
Java+机器学习基础:打造AI学习基础
随着人工智能(AI)技术的飞速发展,越来越多的开发者开始探索如何将AI技术应用到实际业务场景中。Java作为一种强大的编程语言,不仅在企业级应用开发中占据重要地位,在AI领域也展现出了巨大的潜力。本文将通过模拟一个AI应用,从背景历史、业务场景、优缺点、底层原理等方面,介绍如何使用Java结合机器学习技术来打造一个AI学习的基础Demo。
39 18
|
1月前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
115 35
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
109 27
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
72 12
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###

热门文章

最新文章