人工智能的三大主义--——行为主义(actionism),连接主义 (connectionism)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 这段内容涵盖了人工智能领域的重要概念和历史节点。首先介绍了布鲁克斯的六足行走机器人及Spot机器狗,被视为新一代“控制论动物”。接着解释了感知机作为最简单的人工神经网络,通过特征向量进行二分类。1974年,沃伯斯提出误差反向传播(BP)算法,利用梯度调整权重以优化模型。最后,阐述了符号主义、连接主义和行为主义三大学派的发展与融合,强调它们在持续学习中共同推动人工智能的进步。

image.png
这一学派的代表作者首推布鲁克斯(Brooks)的六足行走机器人,还有spot狗狗机器人,它被看作是新一代的“控制论动物”,是一个基于感知-动作模式模拟昆虫行为的控制系统。
image.png
感知机可以被视为一种最简单形式的前馈式人工神经网络,是一种二分类的线性分类判别模型,其输入为实例的特征向量(x1,x2...),神经元的激活函数f为sign,输出为实例的类别(+1或者-1),模型的目标是要将输入实例通过超平面将正负二类分离。
image.png
1974年,哈佛大学沃伯斯(Paul Werbos)博士论文里,首次提出了通过误差的反向传播(BP)来训练人工神经网络。

BP算法的基本思想不是(如感知器那样)用误差本身去调整权重,而是用误差的导数(梯度)调整。通过误差的梯度做反向传播,更新模型权重,以下降学习的误差,拟合学习目标,实现“网络的万能近似功能”的过程。
image.png
人类具有智能不仅仅是因为人有大脑,并且能够保持持续学习。机器要想更“智能”,也需要不断学习。符号主义靠人工赋予机器智能,连接主义是靠机器自行习得智能,行为主义在与环境的作用和反馈中获得智能。它们彼此之间扬长补短,随着人工智能研究的不断深入,这三大学派会融合贯通,共同合作创造出了更强大的人工智能。

相关文章
|
机器学习/深度学习 人工智能 自然语言处理
简述人工智能,及其三大学派:符号主义、连接主义、行为主义
简述人工智能,及其三大学派:符号主义、连接主义、行为主义
6877 0
简述人工智能,及其三大学派:符号主义、连接主义、行为主义
|
8月前
|
机器学习/深度学习 存储 人工智能
人工智能的三大主义
人工智能的三大主义之一——符号主义,通过数学和逻辑符号构建表达式以模拟人类思维。其代表性成果包括1956年的“逻辑理论家”程序和上世纪80年代的专家系统。1997年,“深蓝”计算机击败国际象棋冠军卡斯帕罗夫,是符号主义在博弈领域的巅峰之作。然而,由于人类智能的复杂性和广泛性,符号主义难以完全模拟人类感知和潜智能,逐渐走向衰落。
|
机器学习/深度学习 人工智能 算法
人工智能同时需要实用主义者和蓝天梦想家
为了人类最光明的未来,人工智能中的蓝天崇高思想家需要泥靴实用主义者的帮助
211 0
人工智能同时需要实用主义者和蓝天梦想家
|
6月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
8月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
247 21
|
9月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
201 11
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
670 0
|
8月前
|
机器学习/深度学习 数据采集 人工智能
人工智能在变更管理中的应用:变革的智能化之路
人工智能在变更管理中的应用:变革的智能化之路
389 13
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在客服领域有哪些应用?
人工智能正在彻底改变着传统客服行业,它不仅拓展了业务边界,还推动着整个行业向更高效、更人性化方向迈进。
398 7