【西瓜哥说算法】从前序与中序遍历序列构造二叉树

简介: 前端西瓜哥

大家好,我是前端西瓜哥。今天我们来讲一道有点难度的二叉树算法题:从前序与中序遍历序列构造二叉树。

给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

image.png

示例 1:

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]

示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

LeetCode 题目地址:

https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/

思路

这题的核心在于利用好二叉树的前序遍历和中序遍历特性。

让我们看看示例里的这个二叉树。

image.png


它的前序遍历为:[3,9,20,15,7]

中序遍历为:[9,3,15,20,7]

前序遍历的特点是先访问根节点,再访问左节点和右节点。所以前序遍历数组中,第一个元素就是整棵树的根节点

前序遍历去掉首个元素后的剩余节点,其实可以找到某个索引位置,将这些节点分割,分割后左侧为左节点集合,右侧为右节点集合。

再看中序遍历,中序遍历什么特点。中序遍历遍历先访问左节点,再访问根节点,最后访问右节点。

前面我们通过前序遍历知道根节点是什么了,然后我们在中序遍历中找到这个根节点位置。

此时根节点位置的左侧就是根节点的左子树的所有节点(因为中序遍历 左->根->右 的特性),此时我们也可以计算出左子树的数量。

得到左子树数量,我们再回到前序遍历中,就能计算出左子树的子数组。

image.png


这里我们得到了左子树的前序遍历数组和中序遍历数组。

诶,这不是可以套娃了吗,接下来我们将这个两个数组再传入到递归函数中,递归就形成了。

右子树同理,这里就不赘述了。

代码实现

下面给大伙看看我的代码实现。

function buildTree(preorder, inorder) {
  if (preorder.length === 0) return null;
  const first = preorder[0];
  const root = new TreeNode(first);
  // 根节点在中序遍历中的位置
  const idx = inorder.indexOf(first);
  root.left = buildTree(
    preorder.slice(1, idx + 1),
    inorder.slice(0, idx)
  );
  root.right = buildTree(
    preorder.slice(idx + 1),
    inorder.slice(idx + 1)
  );
  return root;
};

每次我们找到中序遍历中根节点的位置 idx,找到数组的切割位置。分别对 preorder 和 inorder 进行切割,找到左子树和右子树各自的前序遍历和中序遍历数组,然后接着递归。递归结束条件为数组为空。

这种实现的优点是可读性好,不容易写错。

但从效率上,它可以更好,有两个地方可以改进:

  • 每次都要拷贝旧数组生成一个新数组,其实这里我们可以通过维护两对数组开头和结束索引来避免拷贝
  • 每次都要遍历 inorder 数组,来找出根节点的位置,效率较低。这点可以用哈希表缓存值到索引的映射

我并不喜欢这种极致的优化导致的可读性下降。不过我还是得和你们说说优化思路的。

用了这两个方案后,我就要用一个新的递归函数了,因为参数变了。在这里,你可以给递归函数_buildTree 或 MyBuildTree 或者 f(函数的意思)、r(递归的意思)。

这里的命名我都不满意,我还是想用 buildTree。要是 JavaScript 也支持 Java 的那种真正的多态写法就好。Java Script 你这个冒牌 Java。

function buildTree(preorder, inorder) {
  const map = {};
  for (let i = 0; i < inorder.length; i++) {
    map[inorder[i]] = i;
  }
  return _buildTree(preorder, inorder, map, 0, preorder.length, 0, inorder.length);
};
function _buildTree(preorder, inorder, map, pL, pR, iL, iR) {
  if (pL >= pR) return null;
  const first = preorder[pL];
  const root = new TreeNode(first);
  const idx = map[first];
  const leftSize = idx - iL;
  root.left = _buildTree(
    preorder, inorder, map,
    pL + 1, pL + 1 + leftSize,
    iL, iL + leftSize
  );
  root.right = _buildTree(
    preorder, inorder, map,
    pL + leftSize + 1, pR,
    idx + 1, iR
  );
  return root;
};

这种实现的递归函数参数非常多,眼花缭乱,而且计算索引时也非常容易写错,但相比第一种实现确实运行效率更高。

结尾

代码是写给人看的,不是写给机器看的,只是顺便计算机可以执行而已。

在可读性和性能上,我们需要根据场景进行权衡。

如果是业务逻辑代码,对性能没有极致的要求,请写给人看的代码,可读性优先。

如果是底层的注重性能的非业务代码,比如像是 C++ 的 STL 库,那就写出极致性能的代码,可读性可以适当妥协。但这要求你花费更多时间去编写代码,且需要有足够的测试用例来保证正确性。

如果你去面试做算法题,不要强求自己一次写出完美的最佳实现。写出第一版后,再在原来的基础上一点点优化。面试官想要考察你的代码优化能力和思考。

我是前端西瓜哥,欢迎关注我。


相关文章
|
13天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
7天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
12天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
45 5
|
2月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
2月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
69 5
|
1天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
9天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
5天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
10天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。

热门文章

最新文章