如何进行容器镜像加速?| 深度揭秘阿里云 Serverless Kubernetes(3)

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介: 四种方法教你进行容器镜像加速

网络异常,图片无法展示
|


容器相比虚拟机最突出的特点之一便是轻量化和快速启动。相比虚拟机动辄十几个 G 的镜像,容器镜像只包含应用以及应用所需的依赖库,所以可以做到几百 M 甚至更少。但即便如此,几十秒的镜像拉取还是在所难免,如果镜像更大,则耗费时间更长。

 

我们团队(阿里云弹性容器 ECI)分析了 3000 个不同业务 Pod 的启动时间,具体如下图。可以看出,在 Pod 启动过程中,镜像拉取部分耗时最长。大部分 Pod 需要 30s 才能将镜像拉下来,这极大增加了容器的启动时间。

网络异常,图片无法展示
|

如果是大规模启动,这个问题则会变得更糟糕。镜像仓库会因为镜像并发拉取导致带宽打满或者服务端压力过大而直接崩溃。

 

我们多次遇到过这个问题。由于一个服务的副本数达到 1000+ ,在迅速扩容 1000+ 多个实例的时候,很多 Pod 都处于 Pending 状态,等待镜像拉取。

 

虽然 kubernetes 在调度的时候已经支持镜像的亲和性,但只针对老镜像,如果并发启动的新镜像的话,还是需要从镜像仓库里面拉取。下面提供几种常用的解决思路。

 

方法一:多镜像仓库

 

多镜像仓库能够很好降低单个仓库的压力,在并发拉取镜像的时候,可以通过域名解析负载均衡的方法,将镜像仓库地址映射到不同的镜像仓库,从而降低单个仓库的压力。

 

不过,这里有个技术挑战点:镜像仓库之间的镜像同步。

网络异常,图片无法展示
|


为了确保 Docker 客户端无论从哪个仓库都可以获取到最新的镜像,需要保证镜像已经成功复制到了每个镜像仓库。开源的镜像仓库 Harbor 已经支持镜像复制功能,可以帮助我们将镜像分发到不同的仓库中。

 

方法二:P2P 镜像分发

 

多镜像仓库虽然能够缓解单个仓库的压力,但仍然不能完全避免单个仓库被打爆的问题,而且多个仓库的运维成本也比较高。相比而论 P2P 的方案则更加优雅。

 

说起 P2P 大家可能都不陌生,我们常用的迅雷下载就是使用了 P2P 的原理,还有最近比较火的区块链技术底层也是基于 P2P 技术。

 

P2P 镜像分发的原理比较简单。首先将镜像分成很多的“块(block)”,如果某个 Docker 客户端拉取了这个块,那么其他的 Docker 客户端就可以从这个客户端拉数据,从而避免所有的请求都打到镜像仓库。Dragonfly 是阿里开源的 P2P 分发工具。原理如下图所示:

网络异常,图片无法展示
|


其中的 SuperNode 是大脑,负责存储 “块”和客户端的关系,客户端第一次请求会被打到 SuperNode 节点,然后 SuperNode 回源去镜像仓库拉取数据转发给客户端,并且会记录这些块和客户端的对应关系。后续其他客户端请求这些块的时候,SuperNode 会告诉客户端应该去刚才成功拉取的节点上获取数据,从而降低 registry 的负载。下面是我们生产环境并发拉取 Tensorflow 镜像的实测的数据:

网络异常,图片无法展示
|


可以看到,当并启动数比较低的时候,是否使用 P2P 影响不大,但随着并发数的增加,P2P 可以保障镜像拉取时间稳定在 50s。而直接使用镜像仓库的话,拉取时间会随着并发数不断增加,在 1000 并发的时候,已经达到 180s 了。

 

方法三:镜像延迟加载

 

OCI 分层的镜像格式是一把双刃剑。一方面,通过分层可以提升镜像的复用,每次镜像拉取只需要拉增量的部分,另一方面分层的镜像也存在很多问题:

 

  • 数据冗余:不同层之间相同数据在传输和存储时存在冗余内容,每次针对文件的一个小修改就需要复制整个文件;
  • 无法针对小块数据的进行校验,只有完整的层下载完成之后,才能对整个层的数据做完整性校验;
  • 难以实现跨层的删除,当前 OCI 设计中,删除一个文件只能通过 Whiteouts 文件玩了一个障眼法让用户看不到,真实的文件并没有删除。

 

那么,有没有一种不需要下载完整镜像,只在读数据的时候临时加载镜像的方案呢?

 

根据统计显示,在镜像启动的时候,平均只有 6.4%的数据被真正使用到,其余 90%多的数据都属于延迟被使用或者压根用不到。就像手机里面的 App,我们每天常用的也就几个。于是诞生了一种新的镜像加速方案:延迟加载。比较流行的开源项目包括 stargz、dadi 以及 nydus。

 

这里还有一个技术细节,在 OCI 分层的镜像格式中,如何快速找到一个文件呢?如果每次按需加载的时候都需要逐层查找效率就太低了。所以,为了实现镜像数据的低延迟按需加载,我们不能再使用传统的 OCI 镜像格式了,无论是 nydus、dadi 还是 stargz 都重新定义了一种新的镜像格式。

 

其中,Nydus 采用了一种“拍平”的方案,将多个分层“拍平”成一层。元数据是一个目录树,每个叶子节点里面存储了数据块是索引,可以快速定位到一个或者多个数据块。如下图所示,可以看到 Nydus 可以实现不同镜像之间块级别的共享。

网络异常,图片无法展示
|


回想刚才传统 OCI 镜像格式的弊端,使用 Nydus 格式不仅可以去重文件,而且可以实现块级别的按需加载。下图是 Nydus 按需加载的原理图:

网络异常,图片无法展示
|


通过用户态文件系统为 Pod 里面的容器提供 rootfs,当程序启动需要访问某个数据的时候,如果发现本地没有,于是 nydusd 守护进程,便会回源到后端,将数据加载回来。和内核里面的缺页原理非常相似,只不过缺页用于内存懒加载,而 Nydus 应用于镜像文件的懒加载。

 

下面是 Nydus 镜像加速对比原生 OCI 镜像,在拉取时间上的对比效果图,可以看到极大的缩短了镜像拉取时间。(注:统计从镜像开始拉取到镜像拉取成功的耗时)

网络异常,图片无法展示
|


镜像的按需加载不仅可以在文件系统层面实现,还可以下移到更底层的块设备实现,DADI 便是一种基于块设备延迟加载方案。

 

容器应用层 I/O 经过文件系统转换为简单的 Block I/O request,传递给内核虚拟块设备 overlayBD 并转发到用户态进程 lsmd。lsmd 负责对请求进行数据定位,读请求将从不同的上游数据源获取(registry/p2pagent/nas/localfile),写请求将直接写入本地文件系统。

网络异常,图片无法展示
|


上面的 Nydus 测试的是镜像拉取时间,很多人会担心延迟加载解决了镜像拉取耗时,那后续会不会影响应用启动呢?所以这次针对 DADI 的测试,我们实测应用执行的耗时。比如,下面第一个 demo 是运行一个识别猫狗图片的 AI 学习任务,排除 ECI 本身启动耗时之外,如果采用 OCI 镜像需要 62s,而使用 DADI 镜像则只需要 14 秒。

网络异常,图片无法展示
|


最后,细心的你可能已经发现,无论是 Nydus 还是 DADI,不仅可以从 registry 加载数据,也可以从 dragonfly 加载,这就和上面方案二完美结合了。

 

方法四:镜像缓存

 

上面说的几种方案,最终还是需要拉取镜像。传统观念里,我们肯定是需要先把镜像拉到本地,然后启动容器的,但这并不一定是对的。我们能不能不拉镜像,直接将镜像提前加载到一个存储里面,然后在启动容器的时候,直接将这个存储挂载到宿主机上,那么这台机器上面就天然具备这个镜像了,真正做到镜像仓库零压力和镜像拉取零耗时呢?

 

在 ECI 场景中,我们设计了镜像缓存。预先将镜像下载并且解压到云盘,然后制作成云盘快照,等到用户启动容器的时候,先通过快照创建一个云盘,再将云盘挂载到 ECI 上面,从而省去了容器拉取时间。无论是一个几百 M 的镜像还是几百 G 的镜像,在 ECI 上都可以 Pod 都可以实现端到端 10s 启动。

网络异常,图片无法展示
|


上面的介绍的这些镜像加速的方案,无论是 P2P 、Nydus、DADI 还是镜像缓存,目前 ECI 已经全部支持。ECI 的目标之一就是实现容器的极致弹性能力,所以我们会不断优化容器的启动过程,缩短启动耗时,更用户带来更好的体验。

 

这篇文章主要介绍容器镜像加速的几种常用方案。总结说来,主要是通过 P2P 降低镜像仓库压力,通过延迟加载提升容器和应用启动速度,还有通过云盘挂载的方式直接加载镜像,用户可以根据自己的场景选择合适的加速方案。

 

容器启动的全链路中,除了镜像下载以为,还需要 Kubernetes 和 ECI 底层多个方面优化,后续文章会逐渐为大家解密阿里云 ASK 设计过程中各种技术细节,请大家继续关注。

 

本文节选自阿里云技术专家陈晓宇的《深度揭秘阿里云 Serverless Kubernetes》系列专题。本专栏将主要围绕如何在 Serverless Kubernetes 场景中实现秒级扩容,以及在大规模并发启动中遇到的各种技术挑战、难点以及解决方案,系统地揭秘阿里云 Serverless Kubernetes 的发展、架构以及核心技术。


(文章首发于InfoQ平台,已获得作者授权转载,原文链接

 

作者简介:

 

陈晓宇,阿里云技术专家,负责阿里云弹性容器(ECI)底层研发工作,曾出版《深入浅出 Prometheus》 和 《云计算那些事儿》。


相关阅读:

故事,从 Docker 讲起 | 深度揭秘阿里云 Serverless Kubernetes(1)

如何进行架构设计 | 深度揭秘阿里云 Serverless Kubernetes(2)

相关实践学习
通过容器镜像仓库与容器服务快速部署spring-hello应用
本教程主要讲述如何将本地Java代码程序上传并在云端以容器化的构建、传输和运行。
Kubernetes极速入门
Kubernetes(K8S)是Google在2014年发布的一个开源项目,用于自动化容器化应用程序的部署、扩展和管理。Kubernetes通常结合docker容器工作,并且整合多个运行着docker容器的主机集群。 本课程从Kubernetes的简介、功能、架构,集群的概念、工具及部署等各个方面进行了详细的讲解及展示,通过对本课程的学习,可以对Kubernetes有一个较为全面的认识,并初步掌握Kubernetes相关的安装部署及使用技巧。本课程由黑马程序员提供。   相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
2天前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
2天前
|
供应链 安全 Cloud Native
阿里云容器服务助力企业构建云原生软件供应链安全
本文基于2024云栖大会演讲,探讨了软件供应链攻击的快速增长趋势及对企业安全的挑战。文中介绍了如何利用阿里云容器服务ACK、ACR和ASM构建云原生软件供应链安全,涵盖容器镜像的可信生产、管理和分发,以及服务网格ASM实现应用无感的零信任安全,确保企业在软件开发和部署过程中的安全性。
|
2天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
2天前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。
|
2天前
|
人工智能 运维 Kubernetes
拥抱智算时代:阿里云容器服务智能、托管、弹性新体验
本文总结了2024云栖大会容器计算专场的演讲内容,重点介绍了阿里云容器服务的新产品体验,包括智能、托管、弹性的特点,以及如何助力客户拥抱智算时代。文中还分享了多项实际案例和技术细节,展示了阿里云容器服务在提升用户体验和解决实际问题方面的努力。
|
2天前
|
运维 Kubernetes Java
阿里云容器计算服务ACS ,更普惠易用、更柔性、更弹性的容器算力
ACS是阿里云容器服务团队推出的一款面向Serverless场景的子产品,基于K8s界面提供符合容器规范的CPU及GPU算力资源。ACS采用Serverless形态,用户无需关注底层节点及集群运维,按需申请使用,秒级按量付费。该服务旨在打造更普惠易用、更柔性、更弹性的新一代容器算力,简化企业上云门槛,加速业务创新。ACS支持多种业务场景,提供通用型、性能型及BestEffort算力质量,帮助客户更从容应对流量变化,降低综合成本。
|
1天前
|
人工智能 弹性计算 运维
ACK Edge与IDC:高效容器网络通信新突破
本文介绍如何基于ACK Edge以及高效的容器网络插件管理IDC进行容器化。
|
3月前
|
人工智能 自然语言处理 Serverless
阿里云函数计算 x NVIDIA 加速企业 AI 应用落地
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
167 13
|
4月前
|
Serverless API 异构计算
函数计算产品使用问题之修改SD模版应用的运行环境
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
4月前
|
运维 Serverless 网络安全
函数计算产品使用问题之通过仓库导入应用时无法配置域名外网访问,该如何排查
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。

热门文章

最新文章

相关产品

  • 函数计算