2022年最强大数据面试宝典(全文50000字,建议收藏)(二)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云解析 DNS,旗舰版 1个月
简介: 复习大数据面试题,看这一套就够了!

16. YARN的任务提交流程是怎样的


当jobclient向YARN提交一个应用程序后,YARN将分两个阶段运行这个应用程序:一是启动ApplicationMaster;第二个阶段是由ApplicationMaster创建应用程序,为它申请资源,监控运行直到结束。 具体步骤如下:


  1. 用户向YARN提交一个应用程序,并指定ApplicationMaster程序、启动ApplicationMaster的命令、用户程序。
  2. RM为这个应用程序分配第一个Container,并与之对应的NM通讯,要求它在这个Container中启动应用程序ApplicationMaster。
  3. ApplicationMaster向RM注册,然后拆分为内部各个子任务,为各个内部任务申请资源,并监控这些任务的运行,直到结束。
  4. AM采用轮询的方式向RM申请和领取资源。
  5. RM为AM分配资源,以Container形式返回。
  6. AM申请到资源后,便与之对应的NM通讯,要求NM启动任务。
  7. NodeManager为任务设置好运行环境,将任务启动命令写到一个脚本中,并通过运行这个脚本启动任务。
  8. 各个任务向AM汇报自己的状态和进度,以便当任务失败时可以重启任务。
  9. 应用程序完成后,ApplicationMaster向ResourceManager注销并关闭自己。


17. YARN的资源调度三种模型了解吗


在Yarn中有三种调度器可以选择:FIFO Scheduler ,Capacity Scheduler,Fair Scheduler。


Apache版本的hadoop默认使用的是Capacity Scheduler调度方式。CDH版本的默认使用的是Fair Scheduler调度方式


FIFO Scheduler(先来先服务):


FIFO Scheduler把应用按提交的顺序排成一个队列,这是一个先进先出队列,在进行资源分配的时候,先给队列中最头上的应用进行分配资源,待最头上的应用需求满足后再给下一个分配,以此类推。


FIFO Scheduler是最简单也是最容易理解的调度器,也不需要任何配置,但它并不适用于共享集群。大的应用可能会占用所有集群资源,这就导致其它应用被阻塞,比如有个大任务在执行,占用了全部的资源,再提交一个小任务,则此小任务会一直被阻塞。


Capacity Scheduler(能力调度器):


对于Capacity调度器,有一个专门的队列用来运行小任务,但是为小任务专门设置一个队列会预先占用一定的集群资源,这就导致大任务的执行时间会落后于使用FIFO调度器时的时间。


Fair Scheduler(公平调度器):


在Fair调度器中,我们不需要预先占用一定的系统资源,Fair调度器会为所有运行的job动态的调整系统资源。


比如:当第一个大job提交时,只有这一个job在运行,此时它获得了所有集群资源;当第二个小任务提交后,Fair调度器会分配一半资源给这个小任务,让这两个任务公平的共享集群资源。


需要注意的是,在Fair调度器中,从第二个任务提交到获得资源会有一定的延迟,因为它需要等待第一个任务释放占用的Container。小任务执行完成之后也会释放自己占用的资源,大任务又获得了全部的系统资源。最终的效果就是Fair调度器即得到了高的资源利用率又能保证小任务及时完成。


Hive



1. Hive内部表和外部表的区别


未被external修饰的是内部表,被external修饰的为外部表。


区别


  1. 内部表数据由Hive自身管理,外部表数据由HDFS管理;


  1. 内部表数据存储的位置是hive.metastore.warehouse.dir(默认:/user/hive/warehouse),外部表数据的存储位置由自己制定(如果没有LOCATION,Hive将在HDFS上的/user/hive/warehouse文件夹下以外部表的表名创建一个文件夹,并将属于这个表的数据存放在这里);


  1. 删除内部表会直接删除元数据(metadata)及存储数据;删除外部表仅仅会删除元数据,HDFS上的文件并不会被删除。


2. Hive有索引吗


Hive支持索引(3.0版本之前),但是Hive的索引与关系型数据库中的索引并不相同,比如,Hive不支持主键或者外键。并且Hive索引提供的功能很有限,效率也并不高,因此Hive索引很少使用。


  • 索引适用的场景:


适用于不更新的静态字段。以免总是重建索引数据。每次建立、更新数据后,都要重建索引以构建索引表。


  • Hive索引的机制如下:


hive在指定列上建立索引,会产生一张索引表(Hive的一张物理表),里面的字段包括:索引列的值、该值对应的HDFS文件路径、该值在文件中的偏移量。


Hive 0.8版本后引入bitmap索引处理器,这个处理器适用于去重后,值较少的列(例如,某字段的取值只可能是几个枚举值) 因为索引是用空间换时间,索引列的取值过多会导致建立bitmap索引表过大。


注意:Hive中每次有数据时需要及时更新索引,相当于重建一个新表,否则会影响数据查询的效率和准确性,Hive官方文档已经明确表示Hive的索引不推荐被使用,在新版本的Hive中已经被废弃了。


扩展:Hive是在0.7版本之后支持索引的,在0.8版本后引入bitmap索引处理器,在3.0版本开始移除索引的功能,取而代之的是2.3版本开始的物化视图,自动重写的物化视图替代了索引的功能。


3. 运维如何对Hive进行调度


  1. 将hive的sql定义在脚本当中;
  2. 使用azkaban或者oozie进行任务的调度;
  3. 监控任务调度页面。


4. ORC、Parquet等列式存储的优点


ORC和Parquet都是高性能的存储方式,这两种存储格式总会带来存储和性能上的提升。


Parquet:


  1. Parquet支持嵌套的数据模型,类似于Protocol Buffers,每一个数据模型的schema包含多个字段,每一个字段有三个属性:重复次数、数据类型和字段名。

重复次数可以是以下三种:required(只出现1次),repeated(出现0次或多次),optional(出现0次或1次)。每一个字段的数据类型可以分成两种: group(复杂类型)和primitive(基本类型)。


  1. Parquet中没有Map、Array这样的复杂数据结构,但是可以通过repeated和group组合来实现的。


  1. 由于Parquet支持的数据模型比较松散,可能一条记录中存在比较深的嵌套关系,如果为每一条记录都维护一个类似的树状结可能会占用较大的存储空间,因此Dremel论文中提出了一种高效的对于嵌套数据格式的压缩算法:Striping/Assembly算法。通过Striping/Assembly算法,parquet可以使用较少的存储空间表示复杂的嵌套格式,并且通常Repetition level和Definition level都是较小的整数值,可以通过RLE算法对其进行压缩,进一步降低存储空间。


  1. Parquet文件是以二进制方式存储的,是不可以直接读取和修改的,Parquet文件是自解析的,文件中包括该文件的数据和元数据。


ORC:


  1. ORC文件是自描述的,它的元数据使用Protocol Buffers序列化,并且文件中的数据尽可能的压缩以降低存储空间的消耗。


  1. 和Parquet类似,ORC文件也是以二进制方式存储的,所以是不可以直接读取,ORC文件也是自解析的,它包含许多的元数据,这些元数据都是同构ProtoBuffer进行序列化的。


  1. ORC会尽可能合并多个离散的区间尽可能的减少I/O次数。


  1. ORC中使用了更加精确的索引信息,使得在读取数据时可以指定从任意一行开始读取,更细粒度的统计信息使得读取ORC文件跳过整个row group,ORC默认会对任何一块数据和索引信息使用ZLIB压缩,因此ORC文件占用的存储空间也更小。


  1. 在新版本的ORC中也加入了对Bloom Filter的支持,它可以进一 步提升谓词下推的效率,在Hive 1.2.0版本以后也加入了对此的支持。


5. 数据建模用的哪些模型?


1. 星型模型


星形模式


星形模式(Star Schema)是最常用的维度建模方式。星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。 星形模式的维度建模由一个事实表和一组维表成,且具有以下特点:


a. 维表只和事实表关联,维表之间没有关联;

b. 每个维表主键为单列,且该主键放置在事实表中,作为两边连接的外键;

c. 以事实表为核心,维表围绕核心呈星形分布。


2. 雪花模型


雪花模式


雪花模式(Snowflake Schema)是对星形模式的扩展。雪花模式的维度表可以拥有其他维度表的,虽然这种模型相比星型更规范一些,但是由于这种模型不太容易理解,维护成本比较高,而且性能方面需要关联多层维表,性能比星型模型要低。


3. 星座模型


星座模型


星座模式是星型模式延伸而来,星型模式是基于一张事实表的,而星座模式是基于多张事实表的,而且共享维度信息。前面介绍的两种维度建模方法都是多维表对应单事实表,但在很多时候维度空间内的事实表不止一个,而一个维表也可能被多个事实表用到。在业务发展后期,绝大部分维度建模都采用的是星座模式。

数仓建模详细介绍可查看:通俗易懂数仓建模

6. 为什么要对数据仓库分层?


  • 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据。
  • 如果不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。
  • 通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。


数据仓库详细介绍可查看:万字详解整个数据仓库建设体系

7. 使用过Hive解析JSON串吗


Hive处理json数据总体来说有两个方向的路走:


  1. 将json以字符串的方式整个入Hive表,然后通过使用UDF函数解析已经导入到hive中的数据,比如使用LATERAL VIEW json_tuple的方法,获取所需要的列名。


  1. 在导入之前将json拆成各个字段,导入Hive表的数据是已经解析过的。这将需要使用第三方的 SerDe。


详细介绍可查看:Hive解析Json数组超全讲解

8. sort by 和 order by 的区别


order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)只有一个reducer,会导致当输入规模较大时,需要较长的计算时间。


sort by不是全局排序,其在数据进入reducer前完成排序. 因此,如果用sort by进行排序,并且设置mapred.reduce.tasks>1, 则sort by只保证每个reducer的输出有序,不保证全局有序。


9. 数据倾斜怎么解决


数据倾斜问题主要有以下几种:


  1. 空值引发的数据倾斜
  2. 不同数据类型引发的数据倾斜
  3. 不可拆分大文件引发的数据倾斜
  4. 数据膨胀引发的数据倾斜
  5. 表连接时引发的数据倾斜
  6. 确实无法减少数据量引发的数据倾斜


以上倾斜问题的具体解决方案可查看:Hive千亿级数据倾斜解决方案


注意:对于 left join 或者 right join 来说,不会对关联的字段自动去除null值,对于 inner join 来说,会对关联的字段自动去除null值。


小伙伴们在阅读时注意下,在上面的文章(Hive千亿级数据倾斜解决方案)中,有一处sql出现了上述问题(举例的时候原本是想使用left join的,结果手误写成了join)。此问题由公众号读者发现,感谢这位读者指正。


10. Hive 小文件过多怎么解决


1. 使用 hive 自带的 concatenate 命令,自动合并小文件


使用方法:


#对于非分区表
alter table A concatenate;
#对于分区表
alter table B partition(day=20201224) concatenate;


注意:


1、concatenate 命令只支持 RCFILE 和 ORC 文件类型。


2、使用concatenate命令合并小文件时不能指定合并后的文件数量,但可以多次执行该命令。


3、当多次使用concatenate后文件数量不在变化,这个跟参数 mapreduce.input.fileinputformat.split.minsize=256mb 的设置有关,可设定每个文件的最小size。


2. 调整参数减少Map数量


设置map输入合并小文件的相关参数(执行Map前进行小文件合并):

在mapper中将多个文件合成一个split作为输入(CombineHiveInputFormat底层是Hadoop的CombineFileInputFormat方法):


set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; -- 默认


每个Map最大输入大小(这个值决定了合并后文件的数量):


set mapred.max.split.size=256000000;   -- 256M


一个节点上split的至少大小(这个值决定了多个DataNode上的文件是否需要合并):


set mapred.min.split.size.per.node=100000000;  -- 100M


一个交换机下split的至少大小(这个值决定了多个交换机上的文件是否需要合并):


set mapred.min.split.size.per.rack=100000000;  -- 100M


3. 减少Reduce的数量


reduce 的个数决定了输出的文件的个数,所以可以调整reduce的个数控制hive表的文件数量。


hive中的分区函数 distribute by 正好是控制MR中partition分区的,可以通过设置reduce的数量,结合分区函数让数据均衡的进入每个reduce即可:


#设置reduce的数量有两种方式,第一种是直接设置reduce个数
set mapreduce.job.reduces=10;
#第二种是设置每个reduce的大小,Hive会根据数据总大小猜测确定一个reduce个数
set hive.exec.reducers.bytes.per.reducer=5120000000; -- 默认是1G,设置为5G
#执行以下语句,将数据均衡的分配到reduce中
set mapreduce.job.reduces=10;
insert overwrite table A partition(dt)
select * from B
distribute by rand();


对于上述语句解释:如设置reduce数量为10,使用 rand(), 随机生成一个数 x % 10 , 这样数据就会随机进入 reduce 中,防止出现有的文件过大或过小。


4. 使用hadoop的archive将小文件归档


Hadoop Archive简称HAR,是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样在减少namenode内存使用的同时,仍然允许对文件进行透明的访问。


#用来控制归档是否可用
set hive.archive.enabled=true;
#通知Hive在创建归档时是否可以设置父目录
set hive.archive.har.parentdir.settable=true;
#控制需要归档文件的大小
set har.partfile.size=1099511627776;
使用以下命令进行归档:
ALTER TABLE A ARCHIVE PARTITION(dt='2021-05-07', hr='12');
对已归档的分区恢复为原文件:
ALTER TABLE A UNARCHIVE PARTITION(dt='2021-05-07', hr='12');


注意:


归档的分区可以查看不能 insert overwrite,必须先 unarchive

Hive 小文件问题具体可查看:解决hive小文件过多问题

11. Hive优化有哪些


1. 数据存储及压缩:


针对hive中表的存储格式通常有orc和parquet,压缩格式一般使用snappy。相比与textfile格式表,orc占有更少的存储。因为hive底层使用MR计算架构,数据流是hdfs到磁盘再到hdfs,而且会有很多次,所以使用orc数据格式和snappy压缩策略可以降低IO读写,还能降低网络传输量,这样在一定程度上可以节省存储,还能提升hql任务执行效率;


2. 通过调参优化:


并行执行,调节parallel参数;

调节jvm参数,重用jvm;

设置map、reduce的参数;开启strict mode模式;

关闭推测执行设置。


3. 有效地减小数据集将大表拆分成子表;结合使用外部表和分区表。


4. SQL优化


  • 大表对大表:尽量减少数据集,可以通过分区表,避免扫描全表或者全字段;
  • 大表对小表:设置自动识别小表,将小表放入内存中去执行。


Hive优化详细剖析可查看:Hive企业级性能优化


Spark



1. Spark 的运行流程?


Spark运行流程


具体运行流程如下:


  1. SparkContext 向资源管理器注册并向资源管理器申请运行 Executor
  2. 资源管理器分配 Executor,然后资源管理器启动 Executor
  3. Executor 发送心跳至资源管理器
  4. SparkContext 构建 DAG 有向无环图
  5. 将 DAG 分解成 Stage(TaskSet)
  6. 把 Stage 发送给 TaskScheduler
  7. Executor 向 SparkContext 申请 Task
  8. TaskScheduler 将 Task 发送给 Executor 运行
  9. 同时 SparkContext 将应用程序代码发放给 Executor
  10. Task 在 Executor 上运行,运行完毕释放所有资源
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6天前
|
存储 Java easyexcel
招行面试:100万级别数据的Excel,如何秒级导入到数据库?
本文由40岁老架构师尼恩撰写,分享了应对招商银行Java后端面试绝命12题的经验。文章详细介绍了如何通过系统化准备,在面试中展示强大的技术实力。针对百万级数据的Excel导入难题,尼恩推荐使用阿里巴巴开源的EasyExcel框架,并结合高性能分片读取、Disruptor队列缓冲和高并发批量写入的架构方案,实现高效的数据处理。此外,文章还提供了完整的代码示例和配置说明,帮助读者快速掌握相关技能。建议读者参考《尼恩Java面试宝典PDF》进行系统化刷题,提升面试竞争力。关注公众号【技术自由圈】可获取更多技术资源和指导。
|
3月前
|
存储 缓存 关系型数据库
滴滴面试:单表可以存200亿数据吗?单表真的只能存2000W,为什么?
40岁老架构师尼恩在其读者交流群中分享了一系列关于InnoDB B+树索引的面试题及解答。这些问题包括B+树的高度、存储容量、千万级大表的优化、单表数据量限制等。尼恩详细解释了InnoDB的存储结构、B+树的磁盘文件格式、索引数据结构、磁盘I/O次数和耗时,以及Buffer Pool缓存机制对性能的影响。他还提供了实际操作步骤,帮助读者通过元数据找到B+树的高度。尼恩强调,通过系统化的学习和准备,可以大幅提升面试表现,实现“offer直提”。相关资料和PDF可在其公众号【技术自由圈】获取。
|
3月前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
334 1
|
3月前
|
存储 关系型数据库 MySQL
面试官:MySQL一次到底插入多少条数据合适啊?
本文探讨了数据库插入操作的基础知识、批量插入的优势与挑战,以及如何确定合适的插入数据量。通过面试对话的形式,详细解析了单条插入与批量插入的区别,磁盘I/O、内存使用、事务大小和锁策略等关键因素。最后,结合MyBatis框架,提供了实际应用中的批量插入策略和优化建议。希望读者不仅能掌握技术细节,还能理解背后的原理,从而更好地优化数据库性能。
|
3月前
|
存储 大数据 数据库
Android经典面试题之Intent传递数据大小为什么限制是1M?
在 Android 中,使用 Intent 传递数据时存在约 1MB 的大小限制,这是由于 Binder 机制的事务缓冲区限制、Intent 的设计初衷以及内存消耗和性能问题所致。推荐使用文件存储、SharedPreferences、数据库存储或 ContentProvider 等方式传递大数据。
107 0
|
5月前
|
Java
【Java基础面试五】、 int类型的数据范围是多少?
这篇文章回答了Java中`int`类型数据的范围是-2^31到2^31-1,并提供了其他基本数据类型的内存占用和数值范围信息。
【Java基础面试五】、 int类型的数据范围是多少?
|
5月前
|
存储 JavaScript 前端开发
2022年前端js面试题
2022年前端js面试题
48 0
|
5月前
|
NoSQL Java 数据库
2022年整理最详细的java面试题、掌握这一套八股文、面试基础不成问题[吐血整理、纯手撸]
这篇文章是一份详尽的Java面试题总结,涵盖了从面向对象基础到分布式系统设计的多个知识点,适合用来准备Java技术面试。
2022年整理最详细的java面试题、掌握这一套八股文、面试基础不成问题[吐血整理、纯手撸]
|
6月前
|
canal 缓存 NoSQL
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;先删除缓存还是先修改数据库,双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
|
5月前
|
存储 负载均衡 算法
[go 面试] 一致性哈希:数据分片与负载均衡的黄金法则
[go 面试] 一致性哈希:数据分片与负载均衡的黄金法则