阿里云大数据利器Maxcompute-使用mapjoin优化查询

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: small is beautiful,small is powerful

大数据计算服务(MaxCompute,原名 ODPS)是一种快速、完全托管的 GB/TB/PB 级数据仓库解决方案。
https://help.aliyun.com/document_detail/27800.html?spm=5176.7840267.6.539.po3IvS
主要有三种操作数据的方式SQL,UDF,MapReduce,了解hadoop的同学就比较熟悉这些东西了。

 那么Maxcompute的SQL和标准SQL最大的区别就是在Maxcompute中SQL会被解析成MapReduce去执行,当然也可以直接去写MapReduce去计算数据,UDF就是当自带的一些sql引用的函数不能满足业务计算的时候,自己通过代码编写一个函数,sql执行的时候引用。

由此可见实际上底层的计算都是依靠MapReduce这个计算引擎去执行。首先了解下什么是MapReduce。一份数据很大的时候在MaxCompute上是分布式存储的,也就是会分开存放到很多服务器,当一个任务执行的时候会从这些数据所在的服务器上启动一个进程读取这些数据,进行计算等操作,还会启动一个进程把这些数据进行汇总分析并输出。那前者进程叫做Map,后者进程叫做Reduce,合起来叫MapReduce任务。
使用sql操作数据的时候,会经常用到join。比如select * from A a join B b on a.id=b.id,这句sql在转换成MapReduce任务执行的时候:
1,map任务读数据,并对两个表的数据打上不同的tag用来区分
2,reduce端接收打标记的数据,将不同标记的表数据相同关联字段的数据放在一起输出
假设有两个表,我们暂且叫做Big表和Small表,其中Big表数据量比较大,分布式存在n台实例服务器上,Small表存在于一台服务器就放下了。
首先MaxCompute会启动一些Map的进程(Map任务)去读取这些数据分别打上标记,Map的个数是由一个参数控制的这里暂时不解释了。注意对于读取Big表的每个Map任务有可能在其他服务器上,那么这时候就需要到数据所在的服务器上把数据拉过来,Small表也会启动一个或者几个map任务读取文件系统中的数据,读取完成后会到Reduce端接收数据进行关联,判断关联字段相等的就放在一起输出,达到关联效果。
我们可以看一个例子,我准备了一个相对大的表train_user_lt,5G大小,数据大概7亿条。
准备了一个比较小的表map_join_test,只有3条数据。

select a.* from train_user_lt a left outer join map_join_test b on a.user_id = b.user_id;

执行了这句sql,如图
logview
这个执行的过程图是Maxcompute特有的可以帮助用户来查看任务执行的过程等叫做logview,是一个在ODPS Job提交后查看和Debug任务的工具https://help.aliyun.com/document_detail/27987.html
从图中可以看出分为三部分
1,大的表train_user_lt启动了39个map任务去读取数据707025259条
2,小的表启动一个map任务读取3条数据。
3,reduce阶段接收了3+707025259=707025262条数据,输出了707025259条数据,left outer join按照左边的大表输出。
但是看下消耗的时间是40分钟,这样来说算是很长的时间的。那么怎么优化提高速度呢,有没有一种比较方便,比较直接暴力的方式进行优化呢
那么本文的重点就来了--Mapjoin:
MAPJION会把小表全部读入内存中,把小表拷贝多份分发到大表数据所在实例上的内存里,在map阶段直接拿另外一个表的数据和内存中表数据做匹配,由于在map是进行了join操作,省去了reduce运行的效率会高很多。
使用的条件就是当一个大表和一个或多个小表做join时。SQL会将用户指定的小表全部加载到执行join操作的程序的内存中,从而加快join的执行速度。需要注意,在Maxcompute使用mapjoin时:
left outer join的左表必须是大表;
right outer join的右表必须是大表;
inner join左表或右表均可以作为大表;
full outer join不能使用mapjoin;
mapjoin支持小表为子查询;
使用mapjoin时需要引用小表或是子查询时,需要引用别名;
在mapjoin中,可以使用不等值连接或者使用or连接多个条件;
目前MaxCompute 在mapjoin中最多支持指定8张小表,否则报语法错误;
如果使用mapjoin,则所有小表占用的内存总和不得超过512MB。请注意由于MaxCompute 是压缩存储,因此小表在被加载到内存后,数据大小会急剧膨胀。此处的512MB限制是加载到内存后的空间大小;
多个表join时,最左边的两个表不能同时是mapjoin的表。
那么为什么说left outer join的左表必须是大表呢,
因为左表是大表的时候,会拿小表的全部数据和大表所在的实例服务器中的数据匹配一遍,刚好小表就在内存里。如果是左表是小表,那么需要把大表所有的数据拉过来跟小表匹配一遍,试想一下性能会如何。
来看下写法

select /* + mapjoin(b) */  a.* from train_user_lt a left outer join map_join_test b on a.user_id = b.user_id;
//就是在sql语句前加一个标记说这是mapjoin,把小表别名写在括号里

看下优化后的效果
222
任务变成了两个部分,map端直接读取数据和内存里的小表进行关联,然后输出,少了一步reduce。也就是说关联从reduce转到map端进行join,省去了reduce这一步,所以叫做:mapjoin。
看下执行时间1分钟20多秒。之前是40分钟。当然我这边测试是把两个比较极端的数据进行比较,所以效果比较明显。由此看来大表关联小表的时候可以使用mapjoin进行优化查询。
那么mapjoin除了优化性能,还可以干什么呢。
MaxCompute SQL不支持支持在普通join的on条件中使用不等值表达式、or ,like等逻辑等复杂的join条件,但是在mapjoin中可以进行如上操作。例如

    select /*+ mapjoin(a) */
        a.total_price,
        b.total_price
    from shop a join sale_detail b
    on a.total_price < b.total_price or a.total_price + b.total_price < 500;

总结:mapjoin看似很小的操作变化,实际上可以带来很大效率提升,另外还可以解决一些不等关联的业务场景。
正如马云经常说的一句话:
small is beautiful,small is powerful !

有对大数据技术感兴趣的,可以加笔者的微信 wx4085116.目前笔者已经从阿里离职,博客不代表阿里立场。笔者开了一个大数据培训班。有兴趣的加我。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
7天前
|
存储 人工智能 数据管理
|
6天前
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
29 4
|
14天前
|
SQL DataWorks 数据可视化
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
|
14天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
49 2
|
14天前
|
存储 分布式计算 安全
MaxCompute Bloomfilter index 在蚂蚁安全溯源场景大规模点查询的最佳实践
MaxCompute 在11月最新版本中全新上线了 Bloomfilter index 能力,针对大规模数据点查场景,支持更细粒度的数据裁剪,减少查询过程中不必要的数据扫描,从而提高整体的查询效率和性能。
|
2月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据生态圈体系
阿里云大数据计算服务MaxCompute(原ODPS)提供大规模数据存储与计算,支持离线批处理。针对实时计算需求,阿里云推出Flink版。此外,阿里云还提供数据存储服务如OSS、Table Store、RDS和DRDS,以及数据分析平台DataWorks、Quick BI和机器学习平台PAI,构建全面的大数据生态系统。
79 18
|
9天前
|
SQL 存储 分布式计算
阿里云 Paimon + MaxCompute 极速体验
Paimon 和 MaxCompute 的对接经历了长期优化,解决了以往性能不足的问题。通过半年紧密合作,双方团队专门提升了 Paimon 在 MaxCompute 上的读写性能。主要改进包括:采用 Arrow 接口减少数据转换开销,内置 Paimon SDK 提升启动速度,实现原生读写能力,减少中间拷贝与转换,显著降低 CPU 开销与延迟。经过双十一实战验证,Paimon 表的读写速度已接近 MaxCompute 内表,远超传统外表。欢迎体验!
|
2月前
|
负载均衡 大数据
大数据散列分区查询频率
大数据散列分区查询频率
22 5
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
413 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
58 2

相关产品

  • 云原生大数据计算服务 MaxCompute