将人类知识注入预训练模型,让AI“更聪明”

简介: 达摩院首次利用半监督学习将标注的人类知识注入预训练对话模型,在MultiWOZ2.1等三个国际主流对话数据集中均实现了最佳效果,提升幅度明显,为知识和数据融合探索出新路径。目前达摩院这一创新工作的相关论文已被AAAI2022接收。

如何将人类知识注入预训练模型,让知识和数据有机融合,一直是AI研究中的难题。

近日,达摩院首次利用半监督学习将标注的人类知识注入预训练对话模型,在MultiWOZ2.1等三个国际主流对话数据集中均实现了最佳效果,提升幅度明显,为知识和数据融合探索出新路径。

image.png
达摩院新模型在三大国际数据集上的表现

01什么是预训练模型

预训练模型是AI近年来重要的发展趋势,其打破了传统模型通用性差的制约,可做到举一反三,解决多种任务。

常见的预训练模型有预训练语言模型,可以出题让AI写高考作文;预训练多模态模型,可以给到文字让AI生成图片。

而预训练对话模型还需要考虑对话过程中的策略,如:对话轮次、上下文情境、对话人员的角色等,以便理解对方意图并做出恰当回复。

打个比方,在凌晨时分提问AI“明天天气如何”,AI根据理解作出的回答通常是当日天亮后的天气,而非客观事实上的“明天”。

image.png
对话特有的属性总结

经过快速发展,业内已成功构建出万亿参数的大模型。但不少研究者认为,数据量只是一方面,如果能将人类知识有机注入预训练模型,AI有望像人类一样思考。

不过,这并不容易。由于知识数量级远小于无标注数据,简单混合容易导致知识被淹没,或者出现严重的过拟合。

02AI模型的基本训练方法

目前,预训练模型的主流训练方法还是以有监督学习和自监督学习为主,半监督学习更多是配合有监督学习,用于减少数据标注、降低成本等场景。

有监督预训练:存在有标数据进行指导,所学出的特征对某些相关下游任务更加适配,但是却严重依赖人工标注;

自监督预训练:可不再受到人工标注的局限,利用海量无标数据进行学习,但学习成果更多是普适的语义表示。

半监督预训练:从迁移学习的角度来看,可以认为是一个前两种范式的自然延伸,可以充分利用有限的标注知识和大量的无标数据。

此次,达摩院研究人员将半监督学习和自监督学习进行融合,在预训练对话模型中实现了这一创新工作,相关论文已被AAAI2022接收。

image.png
半监督使用示意图

03达摩院的半监督预训练建模方案

构建知识库:

达摩院构建了目前最大的对话动作标签知识库,用于刻画对话策略,总量达97万轮次;

SPACE 1.0模型:

此外,达摩院还设计了新型预训练对话模型SPACE 1.0,采用 encoder+decoder 架构,预训练的目标既包含了传统的建模对话理解和对话生成的自监督 loss,也包含了建模对话策略的半监督 loss。

image.png
达摩院使用的半监督训练方法

新模型在斯坦福 In-Car,剑桥MultiWOZ2.0和亚马逊 MultiWOZ2.1这三个国际主流对话数据集上均实现了SOTA(最佳效果),部分提升超过5%,幅度较大。

在具体案例中,新模型能够更准确预测出对话动作,能够更好和人类进行对话,避免答非所问。

image.png
一轮完整的对话过程

达摩院资深算法专家李永彬表示,这项工作还只是起步,如何将更多的人类标注知识通过半监督的方式注入到预训练模型中、如何让模型自动选择合适的知识、如何更好评价知识注入的效果,还需要体系化的探索和创新。

目前,SPACE 1.0模型已应用于阿里云智能客服等产品,对外输出服务客户。据艾瑞咨询最近发布的《2022年中国对话式AI行业发展白皮书》,阿里云智能客服已领跑中国对话式AI行业。

备注:本文转载自阿里云公众号2022年4月12日《一个让AI“更聪明”的新尝试》

相关文章
|
20天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
63 2
|
28天前
|
机器学习/深度学习 人工智能 自然语言处理
当语言遇见智慧火花:GPT家族历代模型大起底,带你见证从平凡到卓越的AI进化奇迹!
【10月更文挑战第6天】随着自然语言处理技术的进步,GPT系列模型(Generative Pre-trained Transformers)成为该领域的明星。从GPT-1的开创性工作,到GPT-2在规模与性能上的突破,再到拥有1750亿参数的GPT-3及其无需微调即可执行多种NLP任务的能力,以及社区驱动的GPT-NeoX,这些模型不断进化。虽然它们展现出强大的语言理解和生成能力,但也存在如生成错误信息或偏见等问题。本文将对比分析各代GPT模型的特点,并通过示例代码展示其部分功能。
96 2
|
12天前
|
人工智能
AI科学家太多,谁靠谱一试便知!普林斯顿新基准CORE-Bench:最强模型仅有21%准确率
【10月更文挑战第21天】普林斯顿大学研究人员提出了CORE-Bench,一个基于计算可重复性的AI代理基准,涵盖计算机科学、社会科学和医学领域的270个任务。该基准旨在评估AI代理在科学研究中的准确性,具有多样性、难度级别和现实相关性等特点,有助于推动AI代理的发展并提高计算可重复性。
32 4
|
21天前
|
人工智能 自然语言处理
从迷茫到精通:揭秘模型微调如何助你轻松驾驭AI新热点,解锁预训练模型的无限潜能!
【10月更文挑战第13天】本文通过简单的问题解答形式,结合示例代码,详细介绍了模型微调的全流程。从选择预训练模型、准备新任务数据集、设置微调参数,到进行微调训练和评估调优,帮助读者全面理解模型微调的技术细节和应用场景。
58 6
|
29天前
|
人工智能 自然语言处理 安全
【通义】AI视界|Adobe推出文生视频AI模型,迎战OpenAI和Meta
本文精选了过去24小时内的重要科技新闻,包括微软人工智能副总裁跳槽至OpenAI、Adobe推出文本生成视频的AI模型、Meta取消高端头显转而开发超轻量设备、谷歌与核能公司合作为数据中心供电,以及英伟达股价创下新高,市值接近3.4万亿美元。这些动态展示了科技行业的快速发展和激烈竞争。点击链接或扫描二维码获取更多资讯。
|
26天前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
48 4
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
揭开模型微调Fine-Tuning的神秘面纱:如何在预训练基础上巧妙调整,解锁定制AI解决方案的秘密武器
【10月更文挑战第8天】模型微调是在预训练模型基础上,利用特定领域数据进一步训练,以优化模型在特定任务上的表现。此方法广泛应用于自然语言处理和计算机视觉等领域,通过调整预训练模型的部分或全部参数,结合适当的正则化手段,有效提升模型性能。例如,使用Hugging Face的Transformers库对BERT模型进行微调,以改善文本匹配任务的准确率。
53 1
|
7天前
|
人工智能 安全 Cloud Native
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】ChatGPT模型原理介绍(下)
【AI大模型】ChatGPT模型原理介绍(下)

热门文章

最新文章