Python数据分析 | Pandas数据变换高级函数

简介: 本篇为『图解Pandas数据变换高级函数』,讲解3个函数是map、apply和applymap,更高效地完成数据处理过程中对DataFrame进行逐行、逐列和逐元素的操作。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/33
本文地址http://www.showmeai.tech/article-detail/147
声明:版权所有,转载请联系平台与作者并注明出处


当我们提到python数据分析的时候,大部分情况下都会使用Pandas进行操作。pandas整个系列覆盖以下内容:

本篇为『图解Pandas数据变换高级函数』。

一、Pandas的数据变换高级函数


在数据处理过程中,经常需要对DataFrame进行逐行、逐列和逐元素的操作(例如,机器学习中的特征工程阶段)。Pandas中有非常高效简易的内置函数可以完成,最核心的3个函数是map、apply和applymap。下面我们以图解的方式介绍这3个方法的应用方法。

首先,通过numpy模拟生成一组数据。数据集如下所示,各列分别代表身高(height)、体重(weight)、是否吸烟(smoker)、性别(gender)、年龄(age)和肤色(color)。

import numpy as np
import pandas as pd

boolean=[True,False]
gender=["男","女"]
color=["white","black","yellow"]
data=pd.DataFrame({
    "height":np.random.randint(150,190,100),
    "weight":np.random.randint(40,90,100),
    "smoker":[boolean[x] for x in np.random.randint(0,2,100)],
    "gender":[gender[x] for x in np.random.randint(0,2,100)],
    "age":np.random.randint(15,90,100),
    "color":[color[x] for x in np.random.randint(0,len(color),100) ]
}
)

二、Series数据处理

2.1 map方法

当我们需要把series数据逐元素做同一个变换操作时,我们不会使用for循环(效率很低),我们会使用Series.map()来完成,通过简单的一行代码即可完成变换处理。例如,我们把数据集中gender列的男替换为1,女替换为0。

下面我们通过图解的方式,拆解map的操作过程:

(1)使用字典映射的map原理

#①使用字典进行映射
data["gender"] = data["gender"].map({"男":1, "女":0})

map方法

(2)使用函数映射的map原理

#②使用函数
def gender_map(x):
    gender = 1 if x == "男" else 0
    return gender
#注意这里传入的是函数名,不带括号
data["gender"] = data["gender"].map(gender_map)

pandas map操作

如上面例子所示,使用map时,我们可以通过字典或者函数进行映射处理。对于这两种方式,map都是把对应的数据逐个当作参数传入到字典或函数中,进行映射得到结果。

2.2 apply方法

当我们需要完成复杂的数据映射操作处理时,我们会使用到Series对象的apply方法,它和map方法类似,但能够传入功能更为复杂的函数。

我们通过一个例子来理解一下。例如,我们要对年龄age列进行调整(加上或减去一个值),这个加上或减去的值我们希望通过传入。此时,多了1个参数bias,用map方法是操作不了的(传入map的函数只能接收一个参数),apply方法则可以解决这个问题。

def apply_age(x,bias):
    return x+bias

#以元组的方式传入额外的参数
data["age"] = data["age"].apply(apply_age,args=(-3,))

apply方法

可以看到age列都减了3,这是个非常简单的例子,apply在复杂场景下有着更灵活的作用。
总结一下,对于Series而言,map可以完成大部分数据的统一映射处理,而apply方法适合对数据做复杂灵活的函数映射操作。

三、DataFrame数据处理

3.1 apply方法

DataFrame借助apply方法,可以接收各种各样的函数(Python内置的或自定义的)对数据进行处理,非常灵活便捷。
掌握DataFrame的apply方法需要先了解一下axis的概念,在DataFrame对象的大多数方法中,都会有axis这个参数,它控制了你指定的操作是沿着0轴还是1轴进行。axis=0代表操作对列columns进行,axis=1代表操作对行row进行,如下图所示。

apply方法

我们来通过例子理解一下这个方法的使用。例如,我们对data中的数值列分别进行取对数和求和的操作。这时使用apply进行相应的操作,两行代码可以很轻松地解决。

(1)按列求和的实现过程

因为是对列进行操作,所以需要指定axis=0。本次实现的底层,apply到底做了什么呢?我们来通过图解的方式理解一下:

# 沿着0轴求和
data[["height","weight","age"]].apply(np.sum, axis=0)

(2)按列取对数的实现过程

因为是对列进行操作,所以需要指定axis=0。本次实现的底层,apply到底做了什么呢?我们来通过图解的方式理解一下:

# 沿着0轴求和
data[["height","weight","age"]].apply(np.sum, axis=0)

# 沿着0轴取对数
data[["height","weight","age"]].apply(np.log, axis=0)

当沿着轴0(axis=0)进行操作时,会将各列(columns)默认以Series的形式作为参数,传入到你指定的操作函数中,操作后合并并返回相应的结果。

(3)按行计算BMI指数

那我们实际应用过程中有没有(axis=1)的情况呢?例如,我们要根据数据集中的身高和体重计算每个人的BMI指数(体检时常用的指标,衡量人体肥胖程度和是否健康的重要标准),计算公式是:体重指数BMI=体重/身高的平方(国际单位kg/㎡)。

这个操作需要对每个样本(行)进行计算,我们使用apply并指定axis=1来完成,代码和图解如下:

def BMI(series):
    weight = series["weight"]
    height = series["height"]/100
    BMI = weight/height**2
    return BMI

data["BMI"] = data.apply(BMI,axis=1)

当apply设置了axis=1对行进行操作时,会默认将每一行数据以Series的形式(Series的索引为列名)传入指定函数,返回相应的结果。

做个总结,DataFrame中应用apply方法:

  1. 当axis=0时,对每列columns执行指定函数;当axis=1时,对每行row执行指定函数。
  2. 无论axis=0还是axis=1,其传入指定函数的默认形式均为Series,可以通过设置raw=True传入numpy数组。
  3. 对每个Series执行结果后,会将结果整合在一起返回(若想有返回值,定义函数时需要return相应的值)
  4. 当然,DataFrame的apply和Series的apply一样,也能接收更复杂的函数,如传入参数等,实现原理是一样的,具体用法详见官方文档。

3.2 applymap方法

applymap是另一个DataFrame中可能会用到的方法,它会对DataFrame中的每个单元格执行指定函数的操作,如下例所示:

df = pd.DataFrame(
    {

        "A":np.random.randn(5),
        "B":np.random.randn(5),
        "C":np.random.randn(5),
        "D":np.random.randn(5),
        "E":np.random.randn(5),
    }
)

applymap方法

我们希望对DataFrame中所有的数保留两位小数显示,applymap可以帮助我们很快完成,代码和图解如下:

df.applymap(lambda x:"%.2f" % x)

资料与代码下载

本教程系列的代码可以在ShowMeAI对应的 github 中下载,可本地python环境运行。能访问Google的宝宝也可以直接借助google colab一键运行与交互操作学习哦!

本系列教程涉及的速查表可以在以下地址下载获取

拓展参考资料

ShowMeAI相关文章推荐

ShowMeAI系列教程推荐

showmeai

目录
相关文章
|
9天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
33 0
|
3天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
12 2
|
1天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
3天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
69 0
|
10天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
24 1
|
1月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
77 3
|
1月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
38 1
|
2月前
|
机器学习/深度学习 数据采集 监控
Pandas与Matplotlib:Python中的动态数据可视化
Pandas与Matplotlib:Python中的动态数据可视化
下一篇
无影云桌面