Greedy Randomized Adaptive Search 算法超详细解析,附代码实现TSP问题求解(一)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Greedy Randomized Adaptive Search 算法超详细解析,附代码实现TSP问题求解

这两天刚好看到这个算法,然后就写一写吧。贪心随机自适应搜索虽然算是一个比较简单的启发式,但是效果也非常不错的。


微信图片_20220421161448.jpg

01 概述

Greedy Randomized Adaptive Search,贪婪随机自适应搜索(GRAS),是组合优化问题中的多起点元启发式算法。

在算法的每次迭代中,主要由两个阶段组成:构造(construction)和局部搜索( local search)

构造(construction)阶段主要用于生成一个可行解,而后该初始可行解会被放进局部搜索进行邻域搜索,直到找到一个局部最优解为止。

02 整体框架

如上面所说,其实整一个算法的框架相对于其他算法来说还算比较简单明了,大家可以先看以下整体的伪代码:

微信图片_20220421161451.jpg

(GRAS伪代码)

GRAS主要由两部分组成:

1) Greedy_Randomized_Construction:在贪心的基础上,加入一定的随机因素,构造初始可行解。


2) Local Search:对上面构造的初始可行解进行邻域搜索,直到找到一个局部最优解。


然后再多说两句:

Repair是什么鬼?有时候由于随机因素的加入,Greedy_Randomized_Construction阶段生成的解不一定都是可行解,所以为了保证下一步的Local Search能继续进行,加入repair算子,对解进行修复,保证其可行。

不是说自适应(Adaptive)吗?我怎么没看到Adaptive 的过程?
别急,这个后面具体举例的时候会详细讲到。

03 举个例子说明

为了大家能更加深入理解该算法,我们举一个简单的例子来为大家详细讲解算法的流程。

网络异常,图片无法展示
|

假如有一个有限的集合E = {1, 2, 3, ……, n}。可行解的集合,(我知道你们想问是什么,由E的所有子集作为元素构成的集合。)目标函数求目标函数的最小值以及对应的解。

好了,相信大家都看懂上面的问题了(看不懂也别问我,摊手)。对于上述问题,我们来一步一个脚印用GRAS来求解之,来,跟紧小编的脚步……

强调了很多次,GRAS由两部分组成:Greedy_Randomized_Construction和Local Search,所以,在求解具体问题的时候,完成这两部分的设计,然后按照第二节所示的框架搭起来就可以。

3.1 Greedy_Randomized_Construction

这里还是老规矩,先上伪代码给大家看看,然后我们再进行讲解,毕竟对于算法来说,伪代码的作用不言而喻。

微信图片_20220421161507.jpg


Greedy_Randomized_Construction


第1行,一开始解是一个空集。


第2行,初始化候选元素的集合,这里候选元素是指能放进Solution的元素(也就是目前Solution里面没有的),比如1,2,3……。


第3行,对候选集合的每个元素进行评估,计算将元素x放入Solution会导致目标函数f改变量delta_x。


第5行,根据delta_x对各个元素排序,选取部分较好的候选元素组成RCL表(贪心性体现在这里)。


第6行,随机在RCL中选取一个元素放进Solution。(算法的随机性)


第8、9行,更新候选元素集合,然后对每个元素进行重新评估计算delta值。(算法的自适应性体现在这里)


相信经过上面如此详细的介绍,大家都懂了吧!

微信图片_20220421161510.gif

相关文章
|
1月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
48 0
|
1月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
17天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
18天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
52 4
|
19天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
前端开发 算法 JavaScript
无界SaaS模式深度解析:算力算法、链接力、数据确权制度
私域电商的无界SaaS模式涉及后端开发、前端开发、数据库设计、API接口、区块链技术、支付和身份验证系统等多个技术领域。本文通过简化框架和示例代码,指导如何将核心功能转化为技术实现,涵盖用户管理、企业店铺管理、数据流量管理等关键环节。
|
1月前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
30天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。

推荐镜像

更多