又一个Jupyter神器,操作Excel自动生成Python代码!

简介: 不得不说,Jupyter对于表的处理真的是越来越方便了,很多库可以直接实现可视化操作,无需写代码。但是这还不够,最近看到一个神器叫Mito,它真的是做到了无需写一行代码,而且手动的操作可以自动转换为代码,供后续批量化操作,这简直不要太爽。

大家好,我是东哥。

不得不说,Jupyter对于表的处理真的是越来越方便了,很多库可以直接实现可视化操作,无需写代码。但是这还不够,最近看到一个神器叫Mito,它真的是做到了无需写一行代码,而且手动的操作可以自动转换为代码,供后续批量化操作,这简直不要太爽。


一、Mito是什么?


MitoJupyter notebook的一个插件,作用是编辑电子表格,并在编辑表格(带格式转换功能)时,可以生成相对应的Python代码。下面是具体的操作演示,感受一下它的强大!


使用Mito和使用Excel表格没什么太大区别,只需要掌握一些Mito的自定义函数即可,然后它会自动生成pandas处理表的代码。


二、Mito 安装


Mito的安装要求比较简单,有两个:

  • Python 3.6或更高版本
  • 需要安装了Node

打开终端,直接pip安装:

pip install mitosheet

然后,安装JupyterLab扩展管理器。这个命令可能需要运行个几分钟:

jupyter labextension install @jupyter-widgets/jupyterlab-manager@2

最后,启动JupyterLab就完事了。

jupyter lab

也可以用conda安装到一个虚拟环境里。


三、Mito 操作方法


创建一个表


import mitosheet
mitosheet.sheet()


入数据


可以使用pandas读入数据生成dataframemitosheet。如果不想写代码,也可以手动点导入按钮导入数据,导入数据代码会自动生成。

# import Python packages
import mitosheet
import pandas as pd
# Create a simple dataframe to display
car_data = pd.DataFrame({'car': ['Toyota', 'Nissan', 'Honda', 'Mini Cooper', 'Saturn'], 'mph': [60, 50, 60, 75, 90], 'length': [10, 12, 13, 8, 9]})
# render the Mitosheet with car_data
mitosheet.sheet(car_data)


操作方法


Excel一样,一般的两种方法。1.公式法: 如果对公式熟练,直接敲入函数即可,比如sumsumif这种等等。公式法其实就是个孰能生巧的事。我看了下,Mito中的函数不复杂,使用很容易上手。2.分析工具: 如果不熟练函数,Mito也提供了分析工具,比如合并、透视表、筛选、排序、保存分析等部分功能,都是点点点的操作。对于分析工具,给大家演示几种常见的数据处理操作,找找感觉。合并数据集Mito的合并功能可用于将数据集水平组合在一起。通过查找两个表关键列的匹配项,然后将这些匹配项数据组合到一行中。首先,选择要合并在一起的两个Mito工作表。其次,选择合并的键。最后,选择保留哪些列。

9.gif


数据透视表


首先,选择一个关键字对数据分组。然后,如果想进一步将组分层为单个单元格,继续选择列。最后,选择聚合的列和方法。10.gif


筛选


Mito通过组合过滤器和过滤器组来提供强大的过滤功能。

  • 过滤器是单个条件,对于该列中的每个单元格,其评估结果为true或false。
  • 过滤器组是结合了布尔运算符的过滤器聚合。

11.gif

排序


12.gif



保存分析


可以像保存宏一样保存分析。通过保存分析,可以保存应用于数据的转换,以便以后可以将其重新应用于新的数据集。13.gif


四、后话

对于Mito的背后原理,这里不过多介绍,如果感兴趣可以参考这篇博客:https://trymito.io/blog/transpilerMito的创作者是三位来自宾大的学霸 Aaron Diamond-Reivich、Jake Diamond-Reivich和Nate Rush,他们是在搞数据分析的时候,萌生了想要制作Mito的想法。据了解,目前这个软件还没有开源,他们还在思考如何支持维护这个项目,并转到开源路径上来。参考:https://docs.trymito.io/


我是东哥,最近正在原创👉「pandas100个骚操作」系列话题,欢迎订阅。订阅后,文章更新可第一时间推送至订阅号,每篇都不错过。最后给大家分享《100本Python电子书》,包括Python编程技巧、数据分析、爬虫、Web开发、机器学习、深度学习。现在免费分享出来,有需要的读者可以下载学习,在下面的公众号GitHuboy里回复关键字Python,就行


相关文章
|
2天前
|
数据安全/隐私保护 Python
探索Python中的装饰器:简化代码,提升效率
【9月更文挑战第32天】在Python编程世界中,装饰器是一个强大的工具,它允许我们在不改变函数源代码的情况下增加函数的功能。本文将通过直观的例子和代码片段,引导你理解装饰器的概念、使用方法及其背后的魔法,旨在帮助你写出更加优雅且高效的代码。
|
22小时前
|
大数据 Python
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
18 5
|
6天前
|
Python
? Python 装饰器入门:让代码更灵活和可维护
? Python 装饰器入门:让代码更灵活和可维护
12 4
|
6天前
|
缓存 测试技术 Python
探索Python中的装饰器:简化代码,提高可读性
【9月更文挑战第28天】在Python编程中,装饰器是一个强大的工具,它允许我们在不修改原有函数代码的情况下增加额外的功能。本文将深入探讨装饰器的概念、使用方法及其在实际项目中的应用,帮助读者理解并运用装饰器来优化和提升代码的效率与可读性。通过具体示例,我们将展示如何创建自定义装饰器以及如何利用它们简化日常的编程任务。
11 3
|
4天前
|
机器学习/深度学习 数据格式 Python
将特征向量转化为Python代码
将特征向量转化为Python代码
11 1
|
6天前
|
Python
Python 装饰器入门:让代码更灵活和可维护
Python 装饰器入门:让代码更灵活和可维护
11 1
|
4天前
|
数据采集 编解码
jupyter-notebook编写爬虫代码的时候cookie值自动转码的问题
jupyter-notebook编写爬虫代码的时候cookie值自动转码的问题
12 0
|
6天前
|
数据处理 Python
Python切片魔法:一行代码实现高效数据处理
Python切片魔法:一行代码实现高效数据处理
10 0
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
使用Jupyter Notebook进行数据分析:入门与实践
【6月更文挑战第5天】Jupyter Notebook是数据科学家青睐的交互式计算环境,用于创建包含代码、方程、可视化和文本的文档。本文介绍了其基本用法和安装配置,通过一个数据分析案例展示了如何使用Notebook进行数据加载、清洗、预处理、探索、可视化以及建模。Notebook支持多种语言,提供直观的交互体验,便于结果呈现和分享。它是高效数据分析的得力工具,初学者可通过本文案例开始探索。
|
2月前
|
Python
Jupyter Notebook又一利器nbterm,在终端玩notebook!
Jupyter Notebook又一利器nbterm,在终端玩notebook!
下一篇
无影云桌面