— 1 —
为什么需要数据中台
当企业发展到一定规模时,数据是否能够创造价值显得尤为重要。如果没有从业务的角度对数据进行规划,再多的数据也没有用。一个企业业务与数据双中台的战略地位是相辅相成的,需要打造数据与业务的闭环。
- 数据增值:对数据做统一规划、管理、深度挖掘,实现数据到资产的增值;
- 数据流通:高价值数据资源的整合、积累、流通,提升数据处理能力;
- 业务创新:打破技术隔阂,构建智能化技术引擎,提高业务效率和创新能力。
数据中台的核心价值为优化现有业务和实现新业务的转型,打造数据驱动的智能化企业。业务价值:
- 以客户为中心进行精细化运营
- 以数据为基础支撑商业模式创新
- 打造持续增值的数据资产
技术价值:
- 应对不同数据处理的需求
- 对数据资产进行标签化应用
- 快速复用数据服务
- 快速定位数据血缘链路
2 —
什么是数据中台
传统数据仓库,第一次明确了数据分析的应用场景应该用单独的解决方案去实现,不再依赖于业务的数据库。这个阶段主要是IBM、oracle的产品的黄金年代。但是进入互联网时代后业务发展太快,数据量剧增,传统数据仓库逐渐没落。为什么传统数据仓库效率这么低?自顶向下建模。
数据湖(Data Lake)是一个以原始格式存储数据的存储库或系统。以google发布的三篇论文为基础实现的hadoop开源项目的出现大数据平台是面向数据研发场景的,覆盖数据研发的完整链路的数据工作台。
大数据平台像一条设备流水线,经过大数据平台的加工,原始数据变成了指标,出现在各个报表或者数据产品中。
数据中台的核心,是在企业数字化战略的基础上,利用一套技术标准构建的共享、安全、标准、统一的数据服务。
恩门建模(自顶向下)因为是从数据源和主题域开始构建,构建成本比较高,适用于应用场景比较固定的业务,比如金融领域,冗余数据少是它的优势。金博尔建模(自底向上)由于是从分析场景出发,适用于变化速度比较快的业务,比如互联网业务。
嘉宾观点:数据中台是各个企业独有的一种战略选择和组织形式,不存在数据中台这样的一个能对外直接售卖的产品。