Langchain 与 Elasticsearch:创新数据检索的融合实战

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: Langchain 与 Elasticsearch:创新数据检索的融合实战

1、简介

在信息爆炸的时代,有效地检索和处理数据变得至关重要。Langchain 和 Elasticsearch 的结合,为我们提供了一个强大的工具,以更智能的方式进行数据检索和分析。

作为一名拥有多年 Elasticsearch 实战经验的技术博主,我将在本文中详细介绍这两种技术的整合应用。

2、LangChain 简介

Langchain是一个旨在简化自然语言处理任务的库。它允许开发者轻松地集成和使用各种 AI 模型,如 GPT-3,来处理复杂的语言任务。

3、Elasticsearch 简介

Elasticsearch 是一个高度可扩展的开源全文搜索和分析引擎。它允许用户快速、实时地进行和分析大量数据。

4、LangChain 与 Elasticsearch 的整合

结合 Langchain和 Elasticsearch,我们可以利用 AI 模型的强大语言处理能力,与 Elasticsearch 的高效数据检索功能,实现智能化的搜索解决方案。

4.1 案例1:Langchain 连接 Elasticsearch

以下是一个实际的代码示例,展示了如何使用 Langchain与 Elasticsearch 进行数据检索:

python
Copy code
import ssl
import openai
from elasticsearch import Elasticsearch
from langchain_community.vectorstores import ElasticsearchStore
from langchain_openai import OpenAIEmbeddings
 
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
 
# 设置代理访问 API
os.environ["HTTP_PROXY"] = "http://127.0.0.1:33210"
os.environ["HTTPS_PROXY"] = "http://127.0.0.1:33210"
os.environ["ALL_PROXY"] = "socks5://127.0.0.1:33211"
 
# 加载文档
file_path = 'conf/state_of_the_union.txt'
encoding = 'utf-8'
loader = TextLoader(file_path, encoding=encoding)
documents = loader.load()
 
# 文档分割
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
 
# 连接 Elasticsearch
conn = Elasticsearch(
    "https://127.0.0.1:9200",
    ca_certs = "certs/http_ca.crt",
    basic_auth = ("elastic", "changeme"),
    verify_certs=False
)
 
# 创建索引并进行检索
embeddings = OpenAIEmbeddings()
db = ElasticsearchStore.from_documents(docs, embeddings, index_name="test_index", es_connection=conn)
db.client.indices.refresh(index="test_index")
query = "What did the president say about Ketanji Brown Jackson"
results = db.similarity_search(query)
print(results)

这段代码展示了如何加载、处理文档,并通过 Langchain 结合 Elasticsearch 进行智能检索。

执行结果:

4.2 案例2:精细化处理

进一步,我们可以为文档添加更丰富的元数据,并利用这些元数据进行更精细化的搜索:

# 添加元数据
for i, doc in enumerate(docs):
    doc.metadata["date"] = f"{range(2010, 2020)[i % 10]}-01-01"
    doc.metadata["rating"] = range(1, 6)[i % 5]
    doc.metadata["author"] = ["John Doe", "Jane Doe"][i % 2]
 
# 再次连接 Elasticsearch
conn = Elasticsearch(
    "https://127.0.0.1:9200",
    ca_certs = "certs/http_ca.crt",
    basic_auth = ("elastic", "changeme"),
    verify_certs=False
)
 
# 创建带有元数据的索引
db = ElasticsearchStore.from_documents(docs, embeddings, index_name="test-metadata", es_connection=conn)
 
# 执行检索
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].metadata)
 
# 应用过滤条件
docs = db.similarity_search(query, filter=[{"term": {"metadata.author.keyword": "John Doe"}}])
print(docs[0].metadata)

执行结果:

  • 1、写入 Elasticsearch 索引,效果图:

  • 2、执行检索效果:

在这个案例中,我们通过添加元数据来增强文档的描述性,使得检索结果更加精确和有用。

5、问题解决

在实际应用中,我们可能会遇到各种问题,例如网络连接问题、配置错误或代码逻辑问题。

在这种情况下,确保你的环境设置正确,并且仔细检查代码中的每个步骤,以确保所有操作按预期进行。

6、总结

通过结合 Langchain 和 Elasticsearch,我们可以构建一个强大的数据检索系统,不仅能处理大量数据,还能以智能和高效的方式进行搜索和分析。

官网代码都不能跑起来,需要自己摸索好长时间!

这种技术的融合,为处理复杂的信息检索任务提供了新的可能。

希望这篇博客能够帮助读者更好地理解 Langchain和 Elasticsearch 如何结合,以及如何在实际项目中应用这些技术。这种整合为数据检索和自然语言处理的未来发展开辟了新的道路。

7、参考资料

Langchain 官方文档:

https://python.langchain.com/docs/integrations/vectorstores/elasticsearch

推荐阅读


更短时间更快习得更多干货!

和全球 近2000+ Elastic 爱好者一起精进!


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
2月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
4月前
|
存储 机器学习/深度学习 人工智能
使用 LangChain + Higress + Elasticsearch 构建 RAG 应用
本文介绍了如何利用LangChain、Higress和Elasticsearch快速构建RAG(检索增强生成)应用,实现企业知识的智能检索与问答。首先通过LangChain解析Markdown文档并写入Elasticsearch,接着部署Higress AI网关并配置ai-search插件以整合私有知识库与在线搜索功能。最后,通过实际案例展示了RAG查询流程及结果更新机制,确保内容准确性和时效性。文章还提供了相关参考资料以便进一步学习。
548 38
|
4月前
|
SQL 存储 OLAP
数据外置提速革命:轻量级开源SPL如何用文件存储实现MPP级性能?
传统交易型数据库在分析计算中常遇性能瓶颈,将数据迁至OLAP数据仓库虽可缓解,但成本高、架构复杂。SPL通过轻量级列存文件存储历史数据,提供强大计算能力,大幅简化架构并提升性能。它优化了列式存储、数据压缩与多线程并行处理,在常规及复杂计算场景中均表现优异,甚至单机性能超越集群。实际案例中,SPL在250亿行数据的时空碰撞问题上,仅用6分钟完成ClickHouse集群30分钟的任务。
数据外置提速革命:轻量级开源SPL如何用文件存储实现MPP级性能?
|
5月前
|
弹性计算 运维 算法
阿里云 Elasticsearch Serverless 检索增强型 8.17 版来袭!
阿里云Elasticsearch Serverless 8.17版本,深度融合无服务器架构与分层扩展能力,面向信息检索、向量搜索、语义分析等通用场景,提供全托管服务,在最新特性扩展、自动扩缩性能、资源成本优化等维度均有显著提升。
279 15
|
11月前
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
711 6
|
11月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
415 6
|
5月前
|
人工智能 自然语言处理 运维
让搜索引擎“更懂你”:AI × Elasticsearch MCP Server 开源实战
本文介绍基于Model Context Protocol (MCP)标准的Elasticsearch MCP Server,它为AI助手(如Claude、Cursor等)提供与Elasticsearch数据源交互的能力。文章涵盖MCP概念、Elasticsearch MCP Server的功能特性及实际应用场景,例如数据探索、开发辅助。通过自然语言处理,用户无需掌握复杂查询语法即可操作Elasticsearch,显著降低使用门槛并提升效率。项目开源地址:<https://github.com/awesimon/elasticsearch-mcp>,欢迎体验与反馈。
1486 1
|
7月前
|
存储 数据采集 人工智能
AllData数据中台架构全览:数据时代的智慧中枢
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
AllData数据中台架构全览:数据时代的智慧中枢
|
6月前
|
存储 SQL 监控
【亲测有用】数据中台数据服务管理能力演示
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
6月前
|
存储 消息中间件 NoSQL
【亲测有用】数据中台数据模型管理能力演示
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章