matlab中SVM工具箱的使用方法

简介: matlab中SVM工具箱的使用方法

1,下载SVM工具箱:see.xidian.edu.cn/faculty/chz…


2,安装到matlab文件夹中


 1)将下载的SVM工具箱的文件夹放在\matlab71\toolbox\下

 2)打开matlab->File->Set Path中添加SVM工具箱的文件夹

 现在,就成功的添加成功了.

 可以测试一下:在matlab中输入which svcoutput 回车,如果可以正确显示路径,就证明添加成功了,例如:

C:\Program Files\MATLAB71\toolbox\svm\svcoutput.m


3,用SVM做分类的使用方法

 1)在matlab中输入必要的参数:X,Y,ker,C,p1,p2

   我做的测试中取的数据为:

N = 50;
    n=2*N;
   randn('state',6);
   x1 = randn(2,N)
   y1 = ones(1,N);
   x2 = 5+randn(2,N);
   y2 = -ones(1,N);
    figure;
   plot(x1(1,:),x1(2,:),'bx',x2(1,:),x2(2,:),'k.');
   axis([-3 8 -3 8]);
   title('C-SVC')
   hold on;
    X1 = [x1,x2];
    Y1 = [y1,y2];  
    X=X1';
    Y=Y1';
    其中,X是1002的矩阵,Y是1001的矩阵
    C=Inf;
    ker='linear';
    global p1 p2
    p1=3;
    p2=1;

 

然后,在matlab中输入:[nsv alpha bias] = svc(X,Y,ker,C),回车之后,会显示:


Support Vector Classification
_____________________________
Constructing ...
Optimising ...
Execution time:  1.9 seconds
Status : OPTIMAL_SOLUTION
|w0|^2    : 0.418414
Margin    : 3.091912
Sum alpha : 0.418414
Support Vectors : 3 (3.0%)
nsv =
     3
alpha =
    0.0000
   0.0000
   0.0000
   0.0000
   0.0000


2)输入预测函数,可以得到与预想的分类结果进行比较.

输入:predictedY = svcoutput(X,Y,X,ker,alpha,bias),回车后得到:

 

predictedY =
     1
    1
    1
    1
    1
    1
    1
    1
    1


3)画图

输入:svcplot(X,Y,ker,alpha,bias),回车

image.png

补充:

X和Y为数据,m*n:m为样本数,n为特征向量数

比如:取20组训练数据X,10组有故障,10组无故障的,每个训练数据有13个特征参数,则m=20,n=13

Y为20*1的矩阵,其中,10组为1,10组为-1.

对于测试数据中,如果取6组测试数据,3组有故障,3组无故障的,则m=6,n=13

Y中,m=6,n=1


相关文章
|
27天前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
28天前
|
机器学习/深度学习 编解码 运维
MATLAB高阶谱分析工具箱(HOSA)解析
MATLAB高阶谱分析工具箱(HOSA)解析
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
8月前
|
机器学习/深度学习 数据采集 算法
基于遗传优化SVM的电机参数预测matlab仿真
本项目基于遗传优化支持向量机预测电机性能参数,输入电机结构参数(铁心高度、厚度、绕组匝数、窗口宽度、导线截面积),输出体积及三轴加速度。使用Matlab2022a开发,含详细注释代码与操作视频。算法通过大量样本数据学习结构与性能间的非线性关系,经遗传算法优化SVM参数,提高预测精度和泛化能力。数据预处理包括清洗与归一化,确保模型训练高效稳定。
|
9月前
|
机器学习/深度学习 算法 数据可视化
基于线性核函数的SVM数据分类算法matlab仿真
本程序基于线性核函数的SVM算法实现数据分类,使用MATLAB2022A版本运行。程序生成随机二维数据并分为两组,通过自定义SVM模型(不依赖MATLAB工具箱)进行训练,展示不同惩罚参数C下的分类结果及决策边界。SVM通过寻找最优超平面最大化类别间隔,实现高效分类。 核心代码包括数据生成、模型训练和结果可视化,最终绘制了两类数据点及对应的决策边界。此实现有助于理解SVM的工作原理及其在实际应用中的表现。
|
12月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
12月前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
11月前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。

热门文章

最新文章