GNN入门必看!Google Research教你如何从毛坯开始搭建sota 图神经网络(上)

简介: 图神经网络近几年的发展十分火热,主要原因还是图能够表示连通关系,例如知识图谱等更贴切现实应用!Google Research最近发了一篇博客,从零开始教学GNN的发展路程,不熟悉的同学可以查缺补漏啦!

近几年,神经网络在自然语言、图像、语音等数据上都取得了显著的突破,将模型性能带到了一个前所未有的高度,但如何在图数据上训练仍然是一个可研究的点。

 

传统神经网络输入的数据通常每个sample之间都不存在关系,而图数据更加复杂,每个节点之间存在联系,也更符合真实世界中的数据存储方式。真实世界的物体通常根据它们与其他事物的联系来定义的,一组对象以及它们之间的联系可以很自然地表示为一个图(graph),基于图数据的神经网络也称为Graph Neural Network(GNN)。

 20.jpg图神经网络的发展逐渐受到更多关注,在推理、常识等方面也取得很多成就,来自Google的研究员们最近发表了一篇博客,介绍了图神经网络的发展历程,还对现代图神经网络进行了探讨和解释。

 

一个图由顶点和边组成,在人的脑海中,可以很自然地把社交网络等数据表示为图,那如何把图像和文本表示为图你想过吗?

 21.jpg通常认为图像是带有通道(channels)的矩形网格,将它们表示为例如244x244x3的三维矩阵。

 

另一种看待图像的方式是有规则结构的图像,其中每个像素代表一个节点,并通过边缘连接到相邻的像素。每个非边界像素恰好有8个相邻节点,并且存储在每个节点上的信息是表示像素 RGB 值的三维向量。

 

可视化图的连通性的一种方法是邻接矩阵。对这些节点进行排序,在一个5x5的图像中有25个像素,构造一个矩阵,如果两个节点之间存在一条边那么在邻接矩阵中就存在一个入口。

22.jpg对于文本来说,可以将索引与每个字符、单词或标记相关联,并将文表示为一个有向图,其中每个字符或索引都是一个节点,并通过一条边连接到后面的节点。23.jpg但文本和图像在实际使用上通常不采用这种编码方式,用图来表示是比较多余的一步操作,因为所有图像和文本都具有非常规则的结构。例如,图像的邻接矩阵中通常有一条带状结构,因为所有的节点或像素都连接包含在在一个网格结构中。文本的邻接矩阵只包括一条对角线,因为每个单词只连接到前一个单词和下一个单词。

 

在使用神经网络表示图任务时,一个最重要的表示就是它的连通性,一个比较好的选择就是邻接矩阵,但如前文所说,邻接矩阵过于稀疏,空间利用率不高;另一个问题就是同一个图的邻接矩阵有多种表示方法,神经网络无法保证这些邻接矩阵的输出结果都相同,也就是说不存在置换不变性(permutation invariant)。

 24.jpg并且不同形状的图可能也包含相同的邻接矩阵。

25.jpg一种优雅且高效来表示稀疏矩阵的方法是邻接列表。它们将节点之间的边的连通性描述为邻接列表第k个条目中的元组(i,j)。由于边的数量远低于邻接矩阵的条目数量,因此可以避免了在图的断开部分(不含边)进行计算和存储。

26.jpg既然图的描述是以排列不变的矩阵格式,那图神经网络(GNNs)就可以用来解决图预测任务。GNN是对图的所有属性(节点、边、全局上下文)的可优化变换,它可以保持图的对称性(置换不变性)。GNN采用“图形输入,图形输出”架构,这意味着这些模型类型接受图作为输入,将信息加载到其节点、边和全局上下文,并逐步转换这些embedding,而不更改输入图形的连通性。

 

最简单的GNN模型架构还没有使用图形的连通性,在图的每个组件上使用一个单独的多层感知器(MLP)(其他可微模型都可以)就可以称之为GNN层。

 

对于每个节点向量,使用MLP并返回一个可学习的节点向量。对每一条边也做同样的事情,学习每一条边的embedding,也对全局上下文向量做同样的事情,学习整个图的单个embedding。

 

27.jpg

相关文章
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
【2月更文挑战第17天】ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
224 2
ICLR 2024 Spotlight:训练一个图神经网络即可解决图领域所有分类问题!
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
Transformer 能代替图神经网络吗?
Transformer模型的革新性在于其自注意力机制,广泛应用于多种任务,包括非原始设计领域。近期研究专注于Transformer的推理能力,特别是在图神经网络(GNN)上下文中。
165 5
|
6月前
|
机器学习/深度学习 搜索推荐 知识图谱
图神经网络加持,突破传统推荐系统局限!北大港大联合提出SelfGNN:有效降低信息过载与数据噪声影响
【7月更文挑战第22天】北大港大联手打造SelfGNN,一种结合图神经网络与自监督学习的推荐系统,专攻信息过载及数据噪声难题。SelfGNN通过短期图捕获实时用户兴趣,利用自增强学习提升模型鲁棒性,实现多时间尺度动态行为建模,大幅优化推荐准确度与时效性。经四大真实数据集测试,SelfGNN在准确性和抗噪能力上超越现有模型。尽管如此,高计算复杂度及对图构建质量的依赖仍是待克服挑战。[详细论文](https://arxiv.org/abs/2405.20878)。
101 5
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
6月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
225 0
|
8月前
|
机器学习/深度学习 自然语言处理 搜索推荐
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
106 4
【传知代码】图神经网络长对话理解-论文复现
|
7月前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:图神经网络(GNN)
使用Python实现深度学习模型:图神经网络(GNN)
454 1
|
7月前
|
机器学习/深度学习 搜索推荐 PyTorch
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
1467 2
|
8月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
136 1
|
8月前
|
机器学习/深度学习 数据挖掘 算法框架/工具
想要了解图或图神经网络?没有比看论文更好的方式,面试阿里国际站运营一般会问什么
想要了解图或图神经网络?没有比看论文更好的方式,面试阿里国际站运营一般会问什么