一文多图搞懂KITTI数据集下载及解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 一文多图搞懂KITTI数据集下载及解析

KITTI Dataset


Tip:具体下载请参考:

https://blog.csdn.net/lovely_yoshino/article/details/104996550


1 简介


KITTI数据集由德国卡尔斯鲁厄理工学院和丰田美国技术研究院联合创办,是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。该数据集用于评测立体图像(stereo),光流(optical flow),视觉测距(visual odometry),3D物体检测(object detection)和3D跟踪(tracking)等计算机视觉技术在车载环境下的性能。


KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。 3D目标检测数据集由7481个训练图像和7518个测试图像以及相应的点云数据组成,包括总共80256个标记对象。


下图红色框标记的为我们需要的数据,分别是彩色图像数据(12GB)、点云数据(29GB)、相机矫正数据(16MB)、标签数据(5MB)。其中彩色图像数据、点云数据、相机矫正数据均包含training(7481)和testing(7518)两个部分,标签数据只有training数据。


20200428152240674.png202004281522077.png


1.1 数据采集平台


2020042815244544.png


各设备坐标系、距离信息由上图可见。坐标系转换原理参见click。其实KITTI提供的数据中都包含三者的标定文件,不需人工转换。


20200428152501614.png


1.2 坐标系


20200428152707738.png


  • camera: x = right, y = down, z = forward
  • velodyne: x = forward, y = left, z = up
  • GPS/IMU: x = forward, y = left, z = up


1.3 image文件


image文件以8位PNG格式存储,图集如下:


20200428152809475.png


1.4 velodyne文件


velodyne文件是激光雷达的测量数据(绕其垂直轴(逆时针)连续旋转),以“000001.bin”文件为例,内容如下:


7b14 4642 1058 b541 9643 0340 0000 0000
46b6 4542 1283 b641 3333 0340 0000 0000
4e62 4042 9643 b541 b072 0040 cdcc 4c3d
8340 3f42 08ac b541 3bdf ff3f 0000 0000
e550 4042 022b b841 9cc4 0040 0000 0000
10d8 4042 022b ba41 4c37 0140 0000 0000
3fb5 3a42 14ae b541 5a64 fb3f 0000 0000
7dbf 3942 2731 b641 be9f fa3f 8fc2 f53d
cd4c 3842 3f35 b641 4c37 f93f ec51 383e
dbf9 3742 a69b b641 c3f5 f83f ec51 383e
2586 3742 9a99 b741 fed4 f83f 1f85 6b3e
           .
           .
           .


点云数据以浮点二进制文件格式存储,每行包含8个数据,每个数据由四位十六进制数表示(浮点数),每个数据通过空格隔开。一个点云数据由四个浮点数数据构成,分别表示点云的x、y、z、r(强度 or 反射值),点云的存储方式如下表所示:


20200428153304708.png


1.5 calib文件


calib文件是相机、雷达、惯导等传感器的矫正数据。以“000001.txt”文件为例,内容如下:


/

P0: 7.215377000000e+02 0.000000000000e+00 6.095593000000e+02 0.000000000000e+00 0.000000000000e+00 7.215377000000e+02 1.728540000000e+02 0.000000000000e+00 0.000000000000e+00 0.000000000000e+00 1.000000000000e+00 0.000000000000e+00
P1: 7.215377000000e+02 0.000000000000e+00 6.095593000000e+02 -3.875744000000e+02 0.000000000000e+00 7.215377000000e+02 1.728540000000e+02 0.000000000000e+00 0.000000000000e+00 0.000000000000e+00 1.000000000000e+00 0.000000000000e+00
P2: 7.215377000000e+02 0.000000000000e+00 6.095593000000e+02 4.485728000000e+01 0.000000000000e+00 7.215377000000e+02 1.728540000000e+02 2.163791000000e-01 0.000000000000e+00 0.000000000000e+00 1.000000000000e+00 2.745884000000e-03
P3: 7.215377000000e+02 0.000000000000e+00 6.095593000000e+02 -3.395242000000e+02 0.000000000000e+00 7.215377000000e+02 1.728540000000e+02 2.199936000000e+00 0.000000000000e+00 0.000000000000e+00 1.000000000000e+00 2.729905000000e-03
R0_rect: 9.999239000000e-01 9.837760000000e-03 -7.445048000000e-03 -9.869795000000e-03 9.999421000000e-01 -4.278459000000e-03 7.402527000000e-03 4.351614000000e-03 9.999631000000e-01
Tr_velo_to_cam: 7.533745000000e-03 -9.999714000000e-01 -6.166020000000e-04 -4.069766000000e-03 1.480249000000e-02 7.280733000000e-04 -9.998902000000e-01 -7.631618000000e-02 9.998621000000e-01 7.523790000000e-03 1.480755000000e-02 -2.717806000000e-01
Tr_imu_to_velo: 9.999976000000e-01 7.553071000000e-04 -2.035826000000e-03 -8.086759000000e-01 -7.854027000000e-04 9.998898000000e-01 -1.482298000000e-02 3.195559000000e-01 2.024406000000e-03 1.482454000000e-02 9.998881000000e-01 -7.997231000000e-01


20200428153451171.png


1.6 label文件


label文件是KITTI中object的标签和评估数据,以“000001.txt”文件为例,包含样式如下:


///

Truck 0.00 0 -1.57 599.41 156.40 629.75 189.25 2.85 2.63 12.34 0.47 1.49 69.44 -1.56
Car 0.00 0 1.85 387.63 181.54 423.81 203.12 1.67 1.87 3.69 -16.53 2.39 58.49 1.57
Cyclist 0.00 3 -1.65 676.60 163.95 688.98 193.93 1.86 0.60 2.02 4.59 1.32 45.84 -1.55
DontCare -1 -1 -10 503.89 169.71 590.61 190.13 -1 -1 -1 -1000 -1000 -1000 -10
DontCare -1 -1 -10 511.35 174.96 527.81 187.45 -1 -1 -1 -1000 -1000 -1000 -10
DontCare -1 -1 -10 532.37 176.35 542.68 185.27 -1 -1 -1 -1000 -1000 -1000 -10
DontCare -1 -1 -10 559.62 175.83 575.40 183.15 -1 -1 -1 -1000 -1000 -1000 -10


每一行代表一个object,每一行都有16列分别表示不同的含义,具体如下:


第1列(字符串):代表物体类别(type)

总共有9类,分别是:Car、Van、Truck、Pedestrian、Person_sitting、Cyclist、Tram、Misc、DontCare。其中DontCare标签表示该区域没有被标注,比如由于目标物体距离激光雷达太远。为了防止在评估过程中(主要是计算precision),将本来是目标物体但是因为某些原因而没有标注的区域统计为假阳性(false positives),评估脚本会自动忽略DontCare区域的预测结果。


第2列(浮点数):代表物体是否被截断(truncated)

数值在0(非截断)到1(截断)之间浮动,数字表示指离开图像边界对象的程度。


第3列(整数):代表物体是否被遮挡(occluded)


整数0、1、2、3分别表示被遮挡的程度。


第4列(弧度数):物体的观察角度(alpha)


取值范围为:-pi ~ pi(单位:rad),它表示在相机坐标系下,以相机原点为中心,相机原点到物体中心的连线为半径,将物体绕相机y轴旋转至相机z轴,此时物体方向与相机x轴的夹角,如图1所示。


第5~8列(浮点数):物体的2D边界框大小(bbox)


四个数分别是xmin、ymin、xmax、ymax(单位:pixel),表示2维边界框的左上角和右下角的坐标。


第9~11列(浮点数):3D物体的尺寸(dimensions)


分别是高、宽、长(单位:米)


第12-14列(整数):3D物体的位置(location)


分别是x、y、z(单位:米),特别注意的是,这里的xyz是在相机坐标系下3D物体的中心点位置。


第15列(弧度数):3D物体的空间方向(rotation_y)


取值范围为:-pi ~ pi(单位:rad),它表示,在照相机坐标系下,物体的全局方向角(物体前进方向与相机坐标系x轴的夹角),如图1所示。


第16列(整数):检测的置信度(score)


要特别注意的是,这个数据只在测试集的数据中有**(待确认)**。


20200428153752924.png


1.7 KITTI可视化


目前已经完成了pointcloud、gt boxes、label、dt boxes(PointRCNN)等可视化,后续会把体素化加进去,先贴个可视化效果图:


20200428153851141.png


2. 激光数据


首先在官网KITTI


下载 raw data development kit,其中的readme文件详细记录了你想知道的一切,数据采集装置,不同装置的数据格式,label等。


20200428154122310.png


激光数据是什么形式呢?激光照射到物体表面产生大量点数据,KITTI中的点数据包括四维x,y,z以及reflectance反射强度。Velodyne 3D激光产生点云数据,以.bin(二进制)文件保存。


Velodyne 3D laser scan data
===========================
The velodyne point clouds are stored in the folder 'velodyne_points'. To
save space, all scans have been stored as Nx4 float matrix into a binary
file using the following code:
  stream = fopen (dst_file.c_str(),"wb");
  fwrite(data,sizeof(float),4*num,stream);
  fclose(stream);
Here, data contains 4*num values, where the first 3 values correspond to
x,y and z, and the last value is the reflectance information. All scans
are stored row-aligned, meaning that the first 4 values correspond to the
first measurement. Since each scan might potentially have a different
number of points, this must be determined from the file size when reading
the file, where 1e6 is a good enough upper bound on the number of values:
  // allocate 4 MB buffer (only ~130*4*4 KB are needed)
  int32_t num = 1000000;
  float *data = (float*)malloc(num*sizeof(float));
  // pointers
  float *px = data+0;
  float *py = data+1;
  float *pz = data+2;
  float *pr = data+3;
  // load point cloud
  FILE *stream;
  stream = fopen (currFilenameBinary.c_str(),"rb");
  num = fread(data,sizeof(float),num,stream)/4;
  for (int32_t i=0; i<num; i++) {
    point_cloud.points.push_back(tPoint(*px,*py,*pz,*pr));
    px+=4; py+=4; pz+=4; pr+=4;
  }
  fclose(stream);
x,y and y are stored in metric (m) Velodyne coordinates.
IMPORTANT NOTE: Note that the velodyne scanner takes depth measurements
continuously while rotating around its vertical axis (in contrast to the cameras,
which are triggered at a certain point in time). This means that when computing
point clouds you have to 'untwist' the points linearly with respect to the velo-
dyne scanner location at the beginning and the end of the 360掳 sweep. The time-
stamps for the beginning and the end of the sweeps can be found in the time-
stamps file. The velodyne rotates in counter-clockwise direction.
Of course this 'untwisting' only works for non-dynamic environments.
The relationship between the camera triggers and the velodyne is the following:
We trigger the cameras when the velodyne is looking exactly forward (into the
direction of the cameras).


官方提供的激光数据为N*4的浮点数矩阵,raw data development kit中的matlab文件夹是官方提供matlab接口,主要是将激光数据与相机数据结合,在图像上投影。matlab接口详解及使用 最终可以将点云数据保存为pcd格式,然后用pcl进行相应处理。


相关文章
|
2月前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
2月前
|
前端开发 JavaScript
💥【exceljs】纯前端如何实现Excel导出下载和上传解析?
本文介绍了用于处理Excel文件的库——ExcelJS,相较于SheetJS,ExcelJS支持更高级的样式自定义且易于使用。表格对比显示,ExcelJS在样式设置、内存效率及流式操作方面更具优势。主要适用于Node.js环境,也支持浏览器端使用。文中详细展示了如何利用ExcelJS实现前端的Excel导出下载和上传解析功能,并提供了示例代码。此外,还提供了在线调试的仓库链接和运行命令,方便读者实践。
430 5
|
4月前
|
vr&ar
简单易懂的 全景图高清下载方法以及原理简要解析(支持下载建E、720yun、酷雷曼、景站、酷家乐、百度街景原图)
这篇文章介绍了一种简单易懂的全景图高清下载方法,使用在线网站全景管家,支持下载包括建E、720yun、酷雷曼等多个平台的全景图原图,并简要解析了全景图的原理和制作方法。
简单易懂的 全景图高清下载方法以及原理简要解析(支持下载建E、720yun、酷雷曼、景站、酷家乐、百度街景原图)
|
4月前
|
JSON 数据格式
【Axure高手秘籍】掌握这招,让你的原型设计效率飙升!——元件库导入与使用教程及主流资源下载全解析
【8月更文挑战第20天】Axure RP是界面设计与交互原型制作的强大工具。掌握元件库能显著提升设计效率。元件库包含预设UI元素如按钮、表单等,可直接拖放构建布局。在Axure RP中,通过“元件”选项下的“库”可访问并导入新元件库。导入后,轻松拖放元件至画布调整,甚至自定义样式和交互。利用脚本还能模拟真实交互效果,如按钮点击反馈。推荐资源包括Axure Marketplace、UIZilla等,助力高效设计。
118 0
|
7月前
|
JSON Rust 前端开发
【sheetjs】纯前端如何实现Excel导出下载和上传解析?
本文介绍了如何使用`sheetjs`的`xlsx`库在前端实现Excel的导出和上传。项目依赖包括Vite、React、SheetJS和Arco-Design。对于导出,从后端获取JSON数据,通过`json_to_sheet`、`book_new`和`writeFile`函数生成并下载Excel文件。对于上传,使用`read`函数将上传的Excel文件解析为JSON并发送至后端。完整代码示例可在GitHub仓库[fullee/sheetjs-demo](https://github.com/fullee/sheetjs-demo)中查看。
453 10
|
6月前
|
JSON 前端开发 API
程序技术好文:百度网盘真实地址解析(告别下载百度网盘)
程序技术好文:百度网盘真实地址解析(告别下载百度网盘)
515 0
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
76 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
78 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
63 0

推荐镜像

更多