Redis几个认识误区

本文涉及的产品
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
简介: 项目中曾用到Redis,由于认知不足并未真正用到精髓之处。Redis性能惊人,曾经的技术架构目标是要构建亿级并发。刚好看到一篇关于Redis的文章,转载如下: 1. Redis是什么 这个问题的结果影响了我们怎么用Redis。如果你认为Redis是一个key value store, 那可能会用它来代替MySQL;如果认为它是一个可以持久化的cache, 可能只是它保存

项目中曾用到Redis,由于认知不足并未真正用到精髓之处。Redis性能惊人,曾经的技术架构目标是要构建亿级并发。刚好看到一篇关于Redis的文章,转载如下:

1. Redis是什么

这个问题的结果影响了我们怎么用Redis。如果你认为Redis是一个key value store, 那可能会用它来代替MySQL;如果认为它是一个可以持久化的cache, 可能只是它保存一些频繁访问的临时数据。Redis是REmote DIctionary Server的缩写,在Redis在官方网站的的副标题是A persistent key-value database with built-in net interface written in ANSI-C for Posix systems,这个定义偏向key value store。还有一些看法则认为Redis是一个memory database,因为它的高性能都是基于内存操作的基础。另外一些人则认为Redis是一个data structure server,因为Redis支持复杂的数据特性,比如List, Set等。对Redis的作用的不同解读决定了你对Redis的使用方式。

互联网数据目前基本使用两种方式来存储,关系数据库或者key value。但是这些互联网业务本身并不属于这两种数据类型,比如用户在社会化平台中的关系,它是一个list,如果要用关系数据库存储就需要转换成一种多行记录的形式,这种形式存在很多冗余数据,每一行需要存储一些重复信息。如果用key value存储则修改和删除比较麻烦,需要将全部数据读出再写入。Redis在内存中设计了各种数据类型,让业务能够高速原子的访问这些数据结构,并且不需要关心持久存储的问题,从架构上解决了前面两种存储需要走一些弯路的问题。

2. Redis不可能比Memcache快

很多开发者都认为Redis不可能比Memcached快,Memcached完全基于内存,而Redis具有持久化保存特性,即使是异步的,Redis也不可能比Memcached快。但是测试结果基本是Redis占绝对优势。一直在思考这个原因,目前想到的原因有这几方面。

  • Libevent。和Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis使用另外一个libevent高性能替代libev,但是作者还是坚持Redis应该小巧并去依赖的思路。一个印象深刻的细节是编译Redis之前并不需要执行./configure。
  • CAS问题。CAS是Memcached中比较方便的一种防止竞争修改资源的方法。CAS实现需要为每个cache key设置一个隐藏的cas token,cas相当value版本号,每次set会token需要递增,因此带来CPU和内存的双重开销,虽然这些开销很小,但是到单机10G+ cache以及QPS上万之后这些开销就会给双方相对带来一些细微性能差别(5)。

3. 单台Redis的存放数据必须比物理内存小

Redis的数据全部放在内存带来了高速的性能,但是也带来一些不合理之处。比如一个中型网站有100万注册用户,如果这些资料要用Redis来存储,内存的容量必须能够容纳这100万用户。但是业务实际情况是100万用户只有5万活跃用户,1周来访问过1次的也只有15万用户,因此全部100万用户的数据都放在内存有不合理之处,RAM需要为冷数据买单。

这跟操作系统非常相似,操作系统所有应用访问的数据都在内存,但是如果物理内存容纳不下新的数据,操作系统会智能将部分长期没有访问的数据交换到磁盘,为新的应用留出空间。现代操作系统给应用提供的并不是物理内存,而是虚拟内存(Virtual Memory)的概念。

基于相同的考虑,Redis 2.0也增加了VM特性。让Redis数据容量突破了物理内存的限制。并实现了数据冷热分离。

4. Redis的VM实现是重复造轮子

Redis的VM依照之前的epoll实现思路依旧是自己实现。但是在前面操作系统的介绍提到OS也可以自动帮程序实现冷热数据分离,Redis只需要OS申请一块大内存,OS会自动将热数据放入物理内存,冷数据交换到硬盘,另外一个知名的“理解了现代操作系统(3)”的Varnish就是这样实现,也取得了非常成功的效果。

作者antirez在解释为什么要自己实现VM中提到几个原因(6)。主要OS的VM换入换出是基于Page概念,比如OS VM1个Page是4K, 4K中只要还有一个元素即使只有1个字节被访问,这个页也不会被SWAP, 换入也同样道理,读到一个字节可能会换入4K无用的内存。而Redis自己实现则可以达到控制换入的粒度。另外访问操作系统SWAP内存区域时block进程,也是导致Redis要自己实现VM原因之一。

5. 用get/set方式使用Redis

作为一个key value存在,很多开发者自然的使用set/get方式来使用Redis,实际上这并不是最优化的使用方法。尤其在未启用VM情况下,Redis全部数据需要放入内存,节约内存尤其重要。

假如一个key-value单元需要最小占用512字节,即使只存一个字节也占了512字节。这时候就有一个设计模式,可以把key复用,几个key-value放入一个key中,value再作为一个set存入,这样同样512字节就会存放10-100倍的容量。

这就是为了节约内存,建议使用hashset而不是set/get的方式来使用Redis,详细方法见参考文献(7)。

6. 使用aof代替snapshot

Redis有两种存储方式,默认是snapshot方式,实现方法是定时将内存的快照(snapshot)持久化到硬盘,这种方法缺点是持久化之后如果出现crash则会丢失一段数据。因此在完美主义者的推动下作者增加了aof方式。aof即append only mode,在写入内存数据的同时将操作命令保存到日志文件,在一个并发更改上万的系统中,命令日志是一个非常庞大的数据,管理维护成本非常高,恢复重建时间会非常长,这样导致失去aof高可用性本意。另外更重要的是Redis是一个内存数据结构模型,所有的优势都是建立在对内存复杂数据结构高效的原子操作上,这样就看出aof是一个非常不协调的部分。

其实aof目的主要是数据可靠性及高可用性,在Redis中有另外一种方法来达到目的:Replication。由于Redis的高性能,复制基本没有延迟。这样达到了防止单点故障及实现了高可用。

小结

要想成功使用一种产品,我们需要深入了解它的特性。Redis性能突出,如果能够熟练的驾驭,对国内很多大型应用具有很大帮助。希望更多同行加入到Redis使用及代码研究行列。

参考文献

  1. On Designing and Deploying Internet-Scale Service(PDF)
  2. Facebook’s New Real-Time Messaging System: HBase To Store 135+ Billion Messages A Month
  3. What’s wrong with 1975 programming
  4. Linux epoll is now supported(Google Groups)
  5. CAS and why I don’t want to add it to Redis(Google Groups)
  6. Plans for Virtual Memory(Google Groups)
  7. Full of keys(Salvatore antirez Sanfilippo)

原文连接:http://timyang.net/data/redis-misunderstanding


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
4天前
|
NoSQL Linux Redis
06- 你们使用Redis是单点还是集群 ? 哪种集群 ?
**Redis配置:** 使用哨兵集群,结构为1主2从,加上3个哨兵节点,总计分布在3台Linux服务器上,提供高可用性。
13 0
|
12天前
|
负载均衡 监控 NoSQL
Redis的集群方案有哪些?
Redis集群包括主从复制(基础,手动故障恢复)、哨兵模式(自动高可用)和Redis Cluster(官方分布式解决方案,自动分片和容错)。此外,还有如Codis、Redisson和Twemproxy等第三方工具用于代理和负载均衡。选择方案需考虑应用场景、数据规模和并发需求。
14 2
|
18天前
|
NoSQL Redis
Redis集群(六):集群常用命令及说明
Redis集群(六):集群常用命令及说明
15 0
|
2月前
|
运维 NoSQL 算法
Redis-Cluster 与 Redis 集群的技术大比拼
Redis-Cluster 与 Redis 集群的技术大比拼
43 0
|
12天前
|
NoSQL Java 测试技术
面试官:如何搭建Redis集群?
**Redis Cluster** 是从 Redis 3.0 开始引入的集群解决方案,它分散数据以减少对单个主节点的依赖,提升读写性能。16384 个槽位分配给节点,客户端通过槽位信息直接路由请求。集群是无代理、去中心化的,多数命令直接由节点处理,保持高性能。通过 `create-cluster` 工具快速搭建集群,但适用于测试环境。在生产环境,需手动配置文件,启动节点,然后使用 `redis-cli --cluster create` 分配槽位和从节点。集群动态添加删除节点、数据重新分片及故障转移涉及复杂操作,包括主从切换和槽位迁移。
27 0
面试官:如何搭建Redis集群?
|
16天前
|
存储 缓存 NoSQL
【Redis深度专题】「核心技术提升」探究Redis服务启动的过程机制的技术原理和流程分析的指南(集群功能分析)(一)
【Redis深度专题】「核心技术提升」探究Redis服务启动的过程机制的技术原理和流程分析的指南(集群功能分析)
41 0
|
26天前
|
NoSQL Redis Docker
使用Docker搭建一个“一主两从”的 Redis 集群(超详细步骤)
使用Docker搭建一个“一主两从”的 Redis 集群(超详细步骤)
26 0
|
1月前
|
存储 监控 NoSQL
Redis 架构深入:主从复制、哨兵到集群
大家好,我是小康,今天我们来聊下 Redis 的几种架构模式,包括主从复制、哨兵和集群模式。
Redis 架构深入:主从复制、哨兵到集群
|
1月前
|
运维 负载均衡 NoSQL
【大厂面试官】知道Redis集群和Redis主从有什么区别吗
集群节点之间的故障检测和Redis主从中的哨兵检测很类似,都是通过PING消息来检测的。。。面试官抓抓脑袋,继续看你的简历…得想想考点你不懂的😰。
65 1