李沐《动手学深度学习》PyTorch 实现版开源,瞬间登上 GitHub 热榜!

简介: 李沐《动手学深度学习》PyTorch 实现版开源,瞬间登上 GitHub 热榜!

李沐,亚马逊 AI 主任科学家,名声在外!半年前,由李沐、Aston Zhang 等人合力打造的《动手学深度学习》正式上线,免费供大家阅读。这是一本面向中文读者的能运行、可讨论的深度学习教科书!


image.png


之前,红色石头就分享过这份资源,再次附上:


在线预览地址:


https://zh.d2l.ai/


GitHub 项目地址:


https://github.com/d2l-ai/d2l-zh


课程视频地址:


https://space.bilibili.com/209599371/channel/detail?cid=23541


我们知道,作为 MXNet 的作者之一,李沐的这本《动手学深度学习》也是使用 MXNet 框架写成的。但是很多入坑机器学习的萌新们使用的却是 PyTorch。如果有教材对应的 PyTorch 实现代码就更好了!


撒花!今天就给大家带来这本书的 PyTorch 实现源码。最近,来自印度理工学院的数据科学小组,把《动手学深度学习》从 MXNet “翻译”成了 PyTorch,经过 3 个月的努力,这个项目已经基本完成,并登上了 GitHub 热榜。


image.png

首先放上这份资源的 GitHub 地址:


https://github.com/dsgiitr/d2l-pytorch


详细目录如下:


  • Ch02 Installation
  • Installation
  • Ch03 Introduction
  • Introduction
  • Ch04 The Preliminaries: A Crashcourse
  • 4.1 Data Manipulation
  • 4.2 Linear Algebra
  • 4.3 Automatic Differentiation
  • 4.4 Probability and Statistics
  • 4.5 Naive Bayes Classification
  • 4.6 Documentation
  • Ch05 Linear Neural Networks
  • 5.1 Linear Regression
  • 5.2 Linear Regression Implementation from Scratch
  • 5.3 Concise Implementation of Linear Regression
  • 5.4 Softmax Regression
  • 5.5 Image Classification Data (Fashion-MNIST)
  • 5.6 Implementation of Softmax Regression from Scratch
  • 5.7 Concise Implementation of Softmax Regression
  • Ch06 Multilayer Perceptrons
  • 6.1 Multilayer Perceptron
  • 6.2 Implementation of Multilayer Perceptron from Scratch
  • 6.3 Concise Implementation of Multilayer Perceptron
  • 6.4 Model Selection Underfitting and Overfitting
  • 6.5 Weight Decay
  • 6.6 Dropout
  • 6.7 Forward Propagation Backward Propagation and Computational Graphs
  • 6.8 Numerical Stability and Initialization
  • 6.9 Considering the Environment
  • 6.10 Predicting House Prices on Kaggle
  • Ch07 Deep Learning Computation
  • 7.1 Layers and Blocks
  • 7.2 Parameter Management
  • 7.3 Deferred Initialization
  • 7.4 Custom Layers
  • 7.5 File I/O
  • 7.6 GPUs
  • Ch08 Convolutional Neural Networks
  • 8.1 From Dense Layers to Convolutions
  • 8.2 Convolutions for Images
  • 8.3 Padding and Stride
  • 8.4 Multiple Input and Output Channels
  • 8.5 Pooling
  • 8.6 Convolutional Neural Networks (LeNet)
  • Ch09 Modern Convolutional Networks
  • 9.1 Deep Convolutional Neural Networks (AlexNet)
  • 9.2 Networks Using Blocks (VGG)
  • 9.3 Network in Network (NiN)
  • 9.4 Networks with Parallel Concatenations (GoogLeNet)
  • 9.5 Batch Normalization
  • 9.6 Residual Networks (ResNet)
  • 9.7 Densely Connected Networks (DenseNet)
  • Ch10 Recurrent Neural Networks
  • 10.1 Sequence Models
  • 10.2 Language Models
  • 10.3 Recurrent Neural Networks
  • 10.4 Text Preprocessing
  • 10.5 Implementation of Recurrent Neural Networks from Scratch
  • 10.6 Concise Implementation of Recurrent Neural Networks
  • 10.7 Backpropagation Through Time
  • 10.8 Gated Recurrent Units (GRU)
  • 10.9 Long Short Term Memory (LSTM)
  • 10.10 Deep Recurrent Neural Networks
  • 10.11 Bidirectional Recurrent Neural Networks
  • 10.12 Machine Translation and DataSets
  • 10.13 Encoder-Decoder Architecture
  • 10.14 Sequence to Sequence
  • 10.15 Beam Search
  • Ch11 Attention Mechanism
  • 11.1 Attention Mechanism
  • 11.2 Sequence to Sequence with Attention Mechanism
  • 11.3 Transformer
  • Ch12 Optimization Algorithms
  • 12.1 Optimization and Deep Learning
  • 12.2 Convexity
  • 12.3 Gradient Descent
  • 12.4 Stochastic Gradient Descent
  • 12.5 Mini-batch Stochastic Gradient Descent
  • 12.6 Momentum
  • 12.7 Adagrad
  • 12.8 RMSProp
  • 12.9 Adadelta
  • 12.10 Adam


其中,每一小节都是可以运行的 Jupyter 记事本,你可以自由修改代码和超参数来获取及时反馈,从而积累深度学习的实战经验。


目前,PyTorch 代码还有 6 个小节没有完成,但整体的完成度已经很高了!开发团队希望更多的爱好者加入进来,贡献一份力量!


最后,再次附上 GitHub 地址:


https://github.com/dsgiitr/d2l-pytorch

相关文章
|
13天前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
52 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
10天前
|
人工智能 JavaScript 前端开发
Github 2024-10-28 开源项目周报 Top15
本周GitHub热门项目涵盖Svelte、Open Interpreter、PowerShell等,涉及Web开发、AI助手、自动化工具等领域,Python、JavaScript为主流语言,展现开源技术活跃生态。(239字)
190 19
|
10天前
|
人工智能 JavaScript 前端开发
Github 2024-11-04 开源项目周报 Top14
本周GitHub热门项目涵盖屏幕截图转代码、网页监控、低代码开发等。Python与TypeScript主导,亮点项目包括AI生成代码工具、开源社交应用Bluesky及机器人框架LeRobot,展现AI与自动化技术的快速发展趋势。
81 15
|
10天前
|
人工智能 JavaScript Docker
Github 2024-11-11 开源项目周报 Top15
本周GitHub热门项目涵盖多领域:Python与TypeScript领跑,包括屏幕截图转代码、本地文件共享、PDF处理、AI开发代理等。亮点项目如screenshot-to-code、LocalSend、OpenHands及Diagrams,兼具创新与实用性,广受开发者关注。
90 13
|
10天前
|
人工智能 算法 JavaScript
Github 2024-10-14 开源项目周报 Top14
本周GitHub热门项目共14个,Python项目占7席。涵盖算法实现、生成式AI、金融分析、目标检测等领域,包括TheAlgorithms系列、OpenBB金融平台、Ultralytics YOLO11、Manim动画框架等,展现开源技术多元发展态势。
47 8
|
10天前
|
人工智能 Rust JavaScript
Github 2024-10-07 开源项目周报 Top15
本周GitHub热门项目共15个,Python项目占比最高达7个。榜首为Python算法实现集合TheAlgorithms/Python,Star数超17万;其他亮点包括Godot游戏引擎、OpenBB金融平台、ToolJet低代码框架及新兴AI相关项目如Crawl4AI、Llama Stack等,涵盖游戏、金融、AI、理财等多个领域。
48 4
|
10天前
|
人工智能 Rust 算法
Github 2024-09-30 开源项目周报 Top15
本周GitHub热门项目揭晓:Python主导,AutoGPT居首,涵盖AI、编程、数学动画等领域,助力开发者探索前沿技术。
66 4
|
10天前
|
人工智能 JavaScript 前端开发
Github 2024-09-16 开源项目周报 Top14
本周GitHub热门项目涵盖Python、TypeScript、Go等语言,React居首。亮点包括微软PowerToys、Node版本管理器、AI证件照工具HivisionIDPhotos及端侧大模型MiniCPM等。
43 2
|
10天前
|
Rust JavaScript 安全
Github 2024-09-02 开源项目周报 Top13
本周GitHub热门项目涵盖AI、开发工具与开源替代品。包括Notion替代AppFlowy、Airtable替代NocoDB、云平台Coolify及可观察性平台OpenObserve等,涉及Python、TypeScript、Rust等语言,聚焦效率、隐私与自动化。
41 1
|
1月前
|
人工智能 编解码 JSON
不看后悔!GitHub 开源 MultiTalk .8k star 强大的人语音+图像绑定项目
MultiTalk 是 GitHub 上的开源项目,具备音频驱动、多人对话视频生成功能。支持多路音频与图像绑定,实现高同步唇动与角色互动,适用于教学、虚拟人及短视频创作,已获 8k 星标。
189 0

热门文章

最新文章

推荐镜像

更多