PyTorch | (2)PyTorch 入门-张量

简介: PyTorch | (2)PyTorch 入门-张量

PyTorch | (1)初识PyTorch


PyTorch | (2)PyTorch 入门-张量


PyTorch 是一个基于 Python 的科学计算包,主要定位两类人群:


NumPy 的替代品,可以利用 GPU 的性能进行计算。

深度学习研究平台拥有足够的灵活性和速度

Tensors (张量)

Tensor在PyTorch中负责存储基本数据,PyTorch针对Tensor也提供了相对丰富的函数和方法,所以PyTorch中的Tensor与NumPy的数组具有极高的相似性。Tensor是一种高层次架构,也不要明白什么是深度学习,什么是后向传播,如何对模型进行优化,什么是计算图等技术细节。更重要的是,在PyTorch中定义的Tensor数据类型可以在GPUs上进行运算,而且只需要对变量做一些简单的类型转换就能轻易实现。


Tensors 类似于 NumPy 的 ndarrays ,同时 Tensors 可以使用 GPU 进行计算。

image.png

image.png

image.png

from __future__ import print_function
import torch

构造一个5x3矩阵,不初始化。

x = torch.empty(5, 3)
print(x)

输出:

tensor(1.00000e-04 *
       [[-0.0000,  0.0000,  1.5135],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000],
        [ 0.0000,  0.0000,  0.0000]])

构造一个随机初始化的矩阵:

x = torch.rand(5, 3)
print(x)

输出:

tensor([[ 0.6291,  0.2581,  0.6414],
        [ 0.9739,  0.8243,  0.2276],
        [ 0.4184,  0.1815,  0.5131],
        [ 0.5533,  0.5440,  0.0718],
        [ 0.2908,  0.1850,  0.5297]])

构造一个矩阵全为 0,而且数据类型是 long.

x = torch.zeros(5, 3, dtype=torch.long)
print(x)

输出:

tensor([[ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0]])

构造一个张量,直接使用数据:

x = torch.tensor([5.5, 3])
print(x)

输出:

tensor([ 5.5000,  3.0000])

创建一个 tensor 基于已经存在的 tensor。

x = x.new_ones(5, 3, dtype=torch.double)      
# new_* methods take in sizes
print(x)
x = torch.randn_like(x, dtype=torch.float)    
# override dtype!
print(x)                                      
# result has the same size

输出:

tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.]], dtype=torch.float64)
tensor([[-0.2183,  0.4477, -0.4053],
        [ 1.7353, -0.0048,  1.2177],
        [-1.1111,  1.0878,  0.9722],
        [-0.7771, -0.2174,  0.0412],
        [-2.1750,  1.3609, -0.3322]])

获取它的维度信息:

print(x.size())

输出:

torch.Size([5, 3])


注意

torch.Size 是一个元组,所以它支持左右的元组操作。

操作

在接下来的例子中,我们将会看到加法操作。

加法: 方式 1

y = torch.rand(5, 3)
print(x + y)

输出:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

加法: 方式2

print(torch.add(x, y))

输出:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

加法: 提供一个输出 tensor 作为参数

result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result)


输出:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

加法: in-place

# adds x to y
y.add_(x)
print(y)

输出:

tensor([[-0.1859,  1.3970,  0.5236],
        [ 2.3854,  0.0707,  2.1970],
        [-0.3587,  1.2359,  1.8951],
        [-0.1189, -0.1376,  0.4647],
        [-1.8968,  2.0164,  0.1092]])

注意

任何使张量会发生变化的操作都有一个前缀 ‘’。例如:x.copy(y), x.t_(), 将会改变 x.

你可以使用标准的 NumPy 类似的索引操作注意

print(x[:, 1])

输出

tensor([ 0.4477, -0.0048,  1.0878, -0.2174,  1.3609])

改变大小:如果你想改变一个 tensor 的大小或者形状,你可以使用 torch.view:

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8)  # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size())

输出

torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

如果你有一个元素 tensor ,使用 .item() 来获得这个 value 。

x = torch.randn(1)
print(x)
print(x.item())
tensor([ 0.9422])
0.9422121644020081


目录
相关文章
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
|
2月前
|
存储 并行计算 PyTorch
探索PyTorch:张量数值计算
探索PyTorch:张量数值计算
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
探索PyTorch:张量的创建和数值计算
探索PyTorch:张量的创建和数值计算
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
探索PyTorch:张量的类型转换,拼接操作,索引操作,形状操作
探索PyTorch:张量的类型转换,拼接操作,索引操作,形状操作
|
2月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
47 0
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析
PyTorch提供了几种张量乘法的方法,每种方法都是不同的,并且有不同的应用。我们来详细介绍每个方法,并且详细解释这些函数有什么区别:
86 4
掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析
|
4月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与DistributedDataParallel:分布式训练入门指南
【8月更文第27天】随着深度学习模型变得越来越复杂,单一GPU已经无法满足训练大规模模型的需求。分布式训练成为了加速模型训练的关键技术之一。PyTorch 提供了多种工具来支持分布式训练,其中 DistributedDataParallel (DDP) 是一个非常受欢迎且易用的选择。本文将详细介绍如何使用 PyTorch 的 DDP 模块来进行分布式训练,并通过一个简单的示例来演示其使用方法。
569 2
|
4月前
|
机器学习/深度学习 算法 PyTorch
【深度学习】TensorFlow面试题:什么是TensorFlow?你对张量了解多少?TensorFlow有什么优势?TensorFlow比PyTorch有什么不同?该如何选择?
关于TensorFlow面试题的总结,涵盖了TensorFlow的基本概念、张量的理解、TensorFlow的优势、数据加载方式、算法通用步骤、过拟合解决方法,以及TensorFlow与PyTorch的区别和选择建议。
289 2
|
4月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
59 0
|
5月前
|
机器学习/深度学习 并行计算 数据挖掘
🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术
【7月更文挑战第29天】踏入深度学习世界,新手也能用PyTorch解锁高级数据分析。
48 2