🎓PyTorch深度学习入门课:编程小白也能玩转的高级数据分析术

简介: 【7月更文挑战第29天】踏入深度学习世界,新手也能用PyTorch解锁高级数据分析。

踏入深度学习的浩瀚宇宙,即便是编程领域的初来乍到者,也能凭借PyTorch这一强大工具,解锁高级数据分析的无限可能。PyTorch以其简洁的API设计、动态计算图以及灵活易用的特性,成为了许多学者和工程师的首选。今天,就让我们携手踏上这场从编程小白到深度学习高手的蜕变之旅。

第一步:环境搭建
首先,确保你的开发环境中安装了PyTorch。可以通过PyTorch官网的安装指南,根据你的操作系统和CUDA版本选择合适的安装命令。安装完成后,一个简单的测试代码可以验证安装是否成功:

python
import torch

创建一个张量

x = torch.tensor([1.0, 2.0, 3.0])
y = torch.tensor([4.0, 5.0, 6.0])

执行基本运算

z = x + y
print(z) # 输出: tensor([5., 7., 9.])
第二步:构建基础神经网络
接下来,我们将构建一个简单的神经网络模型,用于理解PyTorch中模型定义、前向传播及梯度下降的基本流程。

python
import torch.nn as nn
import torch.optim as optim

定义神经网络模型

class SimpleNet(nn.Module):
def init(self):
super(SimpleNet, self).init()
self.fc1 = nn.Linear(3, 4) # 输入层到隐藏层
self.fc2 = nn.Linear(4, 1) # 隐藏层到输出层

def forward(self, x):  
    x = torch.relu(self.fc1(x))  
    x = self.fc2(x)  
    return x  

实例化模型、定义损失函数和优化器

model = SimpleNet()
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)

假设输入和目标输出

inputs = torch.randn(1, 3)
targets = torch.tensor([[2.0]])

前向传播、计算损失、反向传播和优化

optimizer.zero_grad() # 清除过往梯度
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward() # 反向传播,计算当前梯度
optimizer.step() # 根据梯度更新网络参数

print(f'Loss: {loss.item()}')
第三步:进阶数据分析应用
掌握了基础之后,我们可以将PyTorch应用于更复杂的数据分析任务中,比如图像分类、时间序列预测等。这里以图像分类为例,简要说明如何使用PyTorch加载数据集、构建CNN模型并进行训练。

python

假设使用torchvision加载CIFAR10数据集

from torchvision import datasets, transforms

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])

trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True)

构建CNN模型(省略具体结构)

...

训练循环(省略详细实现)

for epoch in range(num_epochs):

for images, labels in trainloader:

# 前向传播、计算损失、反向传播、优化

...

通过上述步骤,即便是编程小白也能逐步掌握PyTorch在深度学习及高级数据分析中的应用。记住,实践是提升技能的关键,不断尝试和调试将帮助你更深入地理解这些概念。随着经验的积累,你将能够驾驭更复杂的数据分析任务,开启属于自己的深度学习探索之旅。

相关文章
|
22天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
51 3
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
18天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
44 3
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
1月前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
49 7
|
2月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
321 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
1月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
2月前
|
机器学习/深度学习 算法 数据可视化
如果你的PyTorch优化器效果欠佳,试试这4种深度学习中的高级优化技术吧
在深度学习领域,优化器的选择对模型性能至关重要。尽管PyTorch中的标准优化器如SGD、Adam和AdamW被广泛应用,但在某些复杂优化问题中,这些方法未必是最优选择。本文介绍了四种高级优化技术:序列最小二乘规划(SLSQP)、粒子群优化(PSO)、协方差矩阵自适应进化策略(CMA-ES)和模拟退火(SA)。这些方法具备无梯度优化、仅需前向传播及全局优化能力等优点,尤其适合非可微操作和参数数量较少的情况。通过实验对比发现,对于特定问题,非传统优化方法可能比标准梯度下降算法表现更好。文章详细描述了这些优化技术的实现过程及结果分析,并提出了未来的研究方向。
35 1
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。