清华大学孙茂松组:图神经网络必读论文列表

简介: 近年来,图神经网络研究成为深度学习领域的热点。最近,清华大学朱文武等人综述了图网络,清华大学孙茂松组也发布了预印版综述文章 Graph Neural Networks: A Review of Methods and Applications。除此之外,孙茂松组周界、崔淦渠、张正彦同学对 GNN 相关的综述论文、模型与应用进行了综述,并发布在 GitHub 上。

GitHub 链接:https://github.com/thunlp/GNNPapers


综述论文


这部分共介绍了 8 篇论文,包括前面提到的清华大学的两篇综述论文。


微信图片_20211130171431.jpg


机器之心介绍过其中的部分论文,参见:



模型


模型部分包括 35 篇论文,包括:


  • Yoshua Bengio 发表在 ICLR 2018 上的论文《Graph Attention Networks》,该论文提出了基于近邻节点注意机制的网络架构 GAT,可用于处理复杂、不规则结构的计算图,并在三种困难的基准测试中得到了业内最佳水平,研究人员称该模型有望在未来处理任意不规则结构图。
  • 谷歌发表在 ICLR 2018 上的论文《Graph Partition Neural Networks for Semi-Supervised Classification》,该论文提出了一种图神经网络的新变体——图分割神经网络(Graph Partition Neural Network,GPNN),该网络适用于处理大型图。
  • 清华朱军等人发表在 ICML 2018 上的论文《Stochastic Training of Graph Convolutional Networks with Variance Reduction》,提出基于控制变量的图卷积网络(GCN),有效减少感受野大小。
  • 腾讯 AI Lab 发表在 AAAI 2018 上的论文《Adaptive Graph Convolutional Neural Networks》,提出自适应图卷积神经网络 AGCN,可接受任意图结构和规模的图作为输入。
  • 李佳等人发表在 TOMM 2015 上的论文《CelebrityNet: A Social Network Constructed from Large-Scale Online Celebrity Images》,提出了一种基于图像的社交网络 CelebrityNet,该网络基于名人照片中编码的隐性关系构建而成。
  • KDD 2018 最佳论文《Adversarial Attacks on Neural Networks for Graph Data》,提出了针对图深度学习模型的对抗攻击方法,是首个在属性图上的对抗攻击研究;研究者还提出了一种利用增量计算的高效算法 Nettack。
  • ……


论文列表如下:


微信图片_20211130171437.jpg

微信图片_20211130171510.jpg微信图片_20211130171515.jpg微信图片_20211130171518.jpg


应用


应用部分有 86 篇论文,包括:


  • DeepMind 发表在 ICLR 2017 上的论文《Discovering objects and their relations from entangled scene representations》和《Metacontrol for Adaptive Imagination-Based Optimization》,介绍了交互网络在场景理解和基于想象的决策(imagination-based decision-making)上的应用。
  • Geoffrey Hinton 等人发表在 NIPS 2016 上的论文《Attend, Infer, Repeat: Fast Scene Understanding with Generative Models》,该论文提出了一个用于结构化图像模型(可以对目标进行明确的推理)中的有效推理的框架。这种方法是通过使用一个循环神经网络来执行概率推理——该循环神经网络可以处理场景元素且一次处理一个。关键的是,该模型自身可以学习选择合适数量的推理步骤。相比于监督式的方法,该网络可以产出更精确的推理,而且它们的结构也可以使归纳得到进一步的提升。
  • 港中文发表在 AAAI 2018 上的论文《Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition》,该论文提出了一种时空图卷积网络,并利用它们进行人类行为识别。这种算法基于人类关节位置的时间序列表示而对动态骨骼建模,并将图卷积扩展为时空图卷积网络而捕捉这种时空的变化关系。
  • CMU 和谷歌的 CVPR 2018 Spotlight 论文《Iterative Visual Reasoning Beyond Convolutions》,提出了一种新的迭代视觉推理框架。该框架超越了目前只具备卷积堆栈推理能力的识别系统。该框架由两个核心模块组成:一个是局部模块,使用空间记忆以并行更新的方式存储以前的信念;另一个是全局图形推理模块。
  • 谷歌发表在 NIPS 2017 上的著名论文《Attention Is All You Need》,提出了一种新型的简单网络架构——Transformer,它完全基于注意力机制,彻底放弃了循环和卷积。
  • Christopher D. Manning 发表在 EMNLP 2015 上的论文《Effective Approaches to Attention-based Neural Machine Translation》,探讨了两种简单有效的注意机制类别:一种能顾及到所有源词的全局方法,以及一种只能一次查看源词的一个子集的局部方法。
  • DeepMind 2018 年的研究《Relational Deep Reinforcement Learning》,提出了一种「关系性深度强化学习」方法,并在星际争霸 2 中进行了测试。
  • 来自微软研究院和西门菲莎大学的研究者发表在 ICLR 2018 上的论文《Learning to Represent Programs with Graphs》,提出基于程序图简化程序分析,从源代码中学习。该方法结合基于数理逻辑和自然语言理解的程序分析方法,可以更准确地查找已发布软件中的 bug。
  • 清华朱军等人发表在 ICML 2018 上的论文《Adversarial Attack on Graph Structured Data》,关注图神经网络的鲁棒性,即通过攻击(对抗)训练的方法来增强图神经网络分类的稳定性。
  • Christopher D. Manning 等人发表在 ACL 2015 上的论文《Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks》,提出了改善语义表征的 Tree-LSTM,用于自然语言处理任务,在预测句子相关度和情感分类任务上表现优异。
  • Christopher D. Manning 等人发表在 EMNLP 2018 上的论文《Graph Convolution over Pruned Dependency Trees Improves Relation Extraction》,提出一种用于关系提取的图卷积网络变体。
  • UCLA 朱松纯教授等人发表在 ECCV 2018 上的论文《Learning Human-Object Interactions by Graph Parsing Neural Networks》,提出图解析神经网络(Graph Parsing Neural Network,GPNN),用于检测和识别图像和视频中人-物交互的任务。
  • ……


论文列表如下:


微信图片_20211130171551.jpg微信图片_20211130171554.jpg微信图片_20211130171556.jpg微信图片_20211130171600.jpg微信图片_20211130171603.jpg微信图片_20211130171606.jpg微信图片_20211130171610.jpg微信图片_20211130171614.jpg微信图片_20211130171617.jpg



相关文章
|
2月前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
153 10
|
2月前
|
机器学习/深度学习 边缘计算 算法
SEENN: 迈向时间脉冲早退神经网络——论文阅读
SEENN提出一种时间脉冲早退神经网络,通过自适应调整每个样本的推理时间步数,有效平衡脉冲神经网络的准确率与计算效率。该方法基于置信度判断或强化学习策略,在保证高精度的同时显著降低能耗与延迟,适用于边缘计算与实时处理场景。
151 13
|
2月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
352 1
|
6月前
|
人工智能 算法 异构计算
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
近日,阿里云基础网络技术5篇论文被NSDI 2025主会录用。研究涵盖大模型训练网络故障诊断、仿真、容器网络性能诊断、CDN流控算法智能选择及GPU解耦推理优化等领域。其中,《Evolution of Aegis》提出增强现有体系+训练过程感知的两阶段演进路线,显著降低故障诊断耗时;《SimAI》实现高精度大模型集群训练模拟;《Learning Production-Optimized Congestion Control Selection》通过AliCCS优化CDN拥塞控制;《Prism》设计全新GPU解耦推理方案;《ScalaCN》解决容器化RDMA场景性能问题。
265 7
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
|
12月前
|
安全 网络安全 数据安全/隐私保护
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限
访问控制列表(ACL)是网络安全中的一种重要机制,用于定义和管理对网络资源的访问权限。它通过设置一系列规则,控制谁可以访问特定资源、在什么条件下访问以及可以执行哪些操作。ACL 可以应用于路由器、防火墙等设备,分为标准、扩展、基于时间和基于用户等多种类型,广泛用于企业网络和互联网中,以增强安全性和精细管理。
1716 7
|
10月前
|
SQL Cloud Native API
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
1019 146
|
8月前
|
SQL 缓存 Cloud Native
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
290 63
|
6月前
|
canal 负载均衡 智能网卡
阿里云洛神云网络论文入选SIGCOMM'25主会,相关实习生岗位火热招聘中
阿里云飞天洛神云网络的两项核心技术Nezha和Hermes被SIGCOMM 2025主会录用。Nezha通过计算网络解耦实现vSwitch池化架构,大幅提升网络性能;Hermes则提出用户态引导I/O事件通知框架,优化L7负载均衡。这两项技术突破解决了云网络中的关键问题,展现了阿里云在网络领域的领先实力。
1022 2
|
8月前
|
前端开发 Java 关系型数据库
基于ssm的网络直播带货管理系统,附源码+数据库+论文
该项目为网络直播带货网站,包含管理员和用户两个角色。管理员可进行主页、个人中心、用户管理、商品分类与信息管理、系统及订单管理;用户可浏览主页、管理个人中心、收藏和订单。系统基于Java开发,采用B/S架构,前端使用Vue、JSP等技术,后端为SSM框架,数据库为MySQL。项目运行环境为Windows,支持JDK8、Tomcat8.5。提供演示视频和详细文档截图。
233 10

热门文章

最新文章