TOP50 matplotlib画图经典案例上(附源码,建议收藏)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 很多读者想学Python转数据分析,在学习或使用的过程中经常会忘记一些图表的具体用法,所以行哥分享matplotlib和seaborn速查表给读者们在画图的时候使用


很多读者想学Python转数据分析,在学习或使用的过程中经常会忘记一些图表的具体用法,所以行哥分享matplotlib和seaborn速查表给读者们在画图的时候使用

所有数据都可以通过行哥的公众号【一行数据】的后台回复【一行04】获得

seaborn速查表

还有读者反应,有时候在数据可视化的时候不知道使用什么图来展现数据,这里提供了TOP50的可视化例子可以提供进行选择,**

所有数据都可以通过行哥的公众号【一行数据】的后台回复【一行04】获得

**

文章目录

   所有数据都可以通过行哥的公众号【一行数据】的后台回复【一行04】获得

   所有数据都可以通过行哥的公众号【一行数据】的后台回复【一行04】获得

       0 初始配置

       1.相关性

           1.1 散点图

           1.2 气泡图

           1.3 散点图与最佳拟合线

           1.4 带状抖动图

           1.5 计数图

           1.6 边际直方图

           1.7 边际箱型图

           1.8 相关图

           1.9 成对图

       2.偏差

           2.1 发散型条形图

           2.2 发散型文本

           2.3 发散型散点图

           2.4 带有标记棒棒糖图

           2.5 面积图

       3.排行

           3.1 有序条形图

           3.2 棒棒糖图

           3.3 点图

           3.4 坡度图

           3.5 哑铃图

       4.分布

           4.1 连续直方分布图

           4.2 分类直方图

           4.3 密度图

           4.4 密度曲线直方图

           4.5 Joy Plot

           4.6 分布式点图

           4.7 箱型图

           4.8 点+ 箱型图

           4.9 小提琴图

           4.10 人口金字塔

           4.11 分类图

0 初始配置

# !pip install brewer2mpl
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings; warnings.filterwarnings(action='once')
large = 22; med = 16; small = 12
params = {'axes.titlesize': large,
          'legend.fontsize': med,
          'figure.figsize': (16, 10),
          'axes.labelsize': med,
          'axes.titlesize': med,
          'xtick.labelsize': med,
          'ytick.labelsize': med,
          'figure.titlesize': large}
plt.rcParams.update(params)
plt.style.use('seaborn-whitegrid')
sns.set_style("white")
%matplotlib inline
# mac font
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
# windows font
# plt.rcParams['font.sans-serif'] = ['SimHei']
# Version
print(mpl.__version__)  #> 3.0.0
print(sns.__version__)  #> 0.9.0

1.相关性

相关下的图用于可视化两个或多个变量之间的关系。即,一个变量相对于另一个如何变化。

1.1 散点图

Scatteplot是用于研究两个变量之间关系的经典基础图。如果数据中有多个组,则可能需要以不同的颜色可视化每个组。在中matplotlib,您可以使用方便地执行此操作

image.png

# Import dataset 
midwest = pd.read_csv("data/midwest_filter.csv")
# Prepare Data 
# Create as many colors as there are unique midwest['category']
categories = np.unique(midwest['category'])
colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]
print(colors)
# Draw Plot for Each Category
plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')
for i, category in enumerate(categories):
    plt.scatter('area', 'poptotal', 
                data=midwest.loc[midwest.category==category, :], 
                s=30, c=colors[i], label=str(category))
# Decorations
plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),
              xlabel='面积', ylabel='人口')
plt.xticks(fontsize=16); plt.yticks(fontsize=16)
plt.title("散点图:中西部城市面积与人口的关系", fontsize=22)
plt.legend(fontsize=12)    
plt.show()   

1.2 气泡图

有时想在边界内显示一组点以强调其重要性。在此示例中,您从应该环绕的数据框中获取记录,并将其传递给下面的代码中所述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-jm3dvaIc-1588929515286)(https://imgkr.cn-bj.ufileos.com/4d3a28d3-077f-4290-8d2b-963f5bcf02ad.png)]

from matplotlib import patches
from scipy.spatial import ConvexHull
import warnings; warnings.simplefilter('ignore')
sns.set_style("white")
plt.rcParams['font.sans-serif'] = ['Arial Unicode MS']
# Step 1: Prepare Data
midwest = pd.read_csv("data/midwest_filter.csv")
# As many colors as there are unique midwest['category']
categories = np.unique(midwest['category'])
colors = [plt.cm.tab10(i/float(len(categories)-1)) for i in range(len(categories))]
# Step 2: Draw Scatterplot with unique color for each category
fig = plt.figure(figsize=(16, 10), dpi= 80, facecolor='w', edgecolor='k')    
for i, category in enumerate(categories):
    plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category==category, :], s='dot_size', c=colors[i], label=str(category), edgecolors='black', linewidths=.5)
# Step 3: Encircling
# https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot
def encircle(x,y, ax=None, **kw):
    if not ax: ax=plt.gca()
    p = np.c_[x,y]
    hull = ConvexHull(p)
    poly = plt.Polygon(p[hull.vertices,:], **kw)
    ax.add_patch(poly)
# Select data to be encircled
midwest_encircle_data = midwest.loc[midwest.state=='IN', :]                         
# Draw polygon surrounding vertices    
encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="k", fc="gold", alpha=0.1)
encircle(midwest_encircle_data.area, midwest_encircle_data.poptotal, ec="firebrick", fc="none", linewidth=1.5)
# Step 4: Decorations
plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),
              xlabel='面积', ylabel='人口')
plt.xticks(fontsize=12); plt.yticks(fontsize=12)
plt.title("气泡图", fontsize=22)
plt.legend(fontsize=12)    
plt.show()    

1.3 散点图与最佳拟合线

如果您想了解两个变量如何相对变化,则最好的方法就是拟合

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
df_select = df.loc[df.cyl.isin([4,8]), :]
# Plot
sns.set_style("white")
gridobj = sns.lmplot(x="displ", y="hwy", hue="cyl", data=df_select, 
                     height=7, aspect=1.6, robust=True, palette='tab10', 
                     scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
# Decorations
gridobj.set(xlim=(0.5, 7.5), ylim=(0, 50))
plt.title("Scastterplot with line of best fit grouped by number of cylinders", fontsize=20)
plt.show()

1.4 带状抖动图

通常,多个数据点具有完全相同的X和Y值。结果,多个点相互绘制并隐藏。为避免这种情况,请稍微抖动点,以便您可以直观地看到它们

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Draw Stripplot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)    
sns.stripplot(df.cty, df.hwy, jitter=0.25, size=8, ax=ax, linewidth=.5)
# Decorations
plt.title('Use jittered plots to avoid overlapping of points', fontsize=22)
plt.show()

1.5 计数图

避免点重叠问题的另一种选择是增加点的大小,具体取决于该点上有多少点。因此,点的大小越大,周围的点的集中度就越大。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
df_counts = df.groupby(['hwy', 'cty']).size().reset_index(name='counts')
# Draw Stripplot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)    
sns.stripplot(df_counts.cty, df_counts.hwy, size=df_counts.counts*2, ax=ax)
# Decorations
plt.title('Counts Plot - Size of circle is bigger as more points overlap', fontsize=22)
plt.show()

1.6 边际直方图

边际直方图沿X和Y轴变量具有直方图。这用于可视化X和Y之间的关系以及X和Y的单变量分布。如果经常在探索性数据分析(EDA)中使用此图。

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Create Fig and gridspec
fig = plt.figure(figsize=(16, 10), dpi= 80)
grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)
# Define the axes
ax_main = fig.add_subplot(grid[:-1, :-1])
ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])
# Scatterplot on main ax
ax_main.scatter('displ', 'hwy', s=df.cty*4, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="tab10", edgecolors='gray', linewidths=.5)
# histogram on the right
ax_bottom.hist(df.displ, 40, histtype='stepfilled', orientation='vertical', color='deeppink')
ax_bottom.invert_yaxis()
# histogram in the bottom
ax_right.hist(df.hwy, 40, histtype='stepfilled', orientation='horizontal', color='deeppink')
# Decorations
ax_main.set(title='Scatterplot with Histograms \n displ vs hwy', xlabel='displ', ylabel='hwy')
ax_main.title.set_fontsize(20)
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
    item.set_fontsize(14)
xlabels = ax_main.get_xticks().tolist()
ax_main.set_xticklabels(xlabels)
plt.show()

1.7 边际箱型图

边际箱线图的作用类似于边际直方图。但是,箱形图有助于查明X和Y的中位数,第25和第75个百分位数

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dasYTrY8-1588929515289)(https://imgkr.cn-bj.ufileos.com/3d3d0a9f-0407-4c31-8ea5-8952bb0959dc.png)]

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Create Fig and gridspec
fig = plt.figure(figsize=(16, 10), dpi= 80)
grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)
# Define the axes
ax_main = fig.add_subplot(grid[:-1, :-1])
ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])
# Scatterplot on main ax
ax_main.scatter('displ', 'hwy', s=df.cty*5, c=df.manufacturer.astype('category').cat.codes, alpha=.9, data=df, cmap="Set1", edgecolors='black', linewidths=.5)
# Add a graph in each part
sns.boxplot(df.hwy, ax=ax_right, orient="v")
sns.boxplot(df.displ, ax=ax_bottom, orient="h")
# Decorations ------------------
# Remove x axis name for the boxplot
ax_bottom.set(xlabel='')
ax_right.set(ylabel='')
# Main Title, Xlabel and YLabel
ax_main.set(title='Scatterplot with Histograms \n displ vs hwy', xlabel='displ', ylabel='hwy')
# Set font size of different components
ax_main.title.set_fontsize(20)
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] + ax_main.get_xticklabels() + ax_main.get_yticklabels()):
    item.set_fontsize(14)
plt.show()

1.8 相关图

关联图用于直观地查看给定数据帧(或2D数组)中所有可能的数字变量对之间的相关性度量。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MAY2sJfR-1588929515290)(https://imgkr.cn-bj.ufileos.com/07319caa-7724-41d3-bc0e-2c4b7fc2e4dd.png)]

# Import Dataset
df = pd.read_csv("data/mtcars.csv")
# Plot
plt.figure(figsize=(12,10), dpi= 80)
sns.heatmap(df.corr(), xticklabels=df.corr().columns, yticklabels=df.corr().columns, cmap='RdYlGn', center=0, annot=True)
# Decorations
plt.title('Correlogram of mtcars', fontsize=22)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
plt.show()

   12

1.9 成对图

在理解分析中所有可能的数字变量对之间的关系时,成对绘图是最喜欢的。它是用于双变量分析的必备工具

# Load Dataset
df = sns.load_dataset('iris')
# Plot
plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind="scatter", hue="species", plot_kws=dict(s=80, edgecolor="white", linewidth=2.5))
plt.show()

image.png

# Load Dataset
df = sns.load_dataset('iris')
# Plot
plt.figure(figsize=(10,8), dpi= 80)
sns.pairplot(df, kind="reg", hue="species")
plt.show()

2.偏差

2.1 发散型条形图

如果要查看项目基于单个度量标准的变化方式并可视化此变化的顺序和数量,则分叉条是一个很好的工具。它有助于快速区分数据中组的性能,并且非常直观,可以立即传达要点。

# Prepare Data
df = pd.read_csv("data/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)
# Draw plot
plt.figure(figsize=(14,10), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=5)
# Decorations
plt.gca().set(ylabel='$Model$', xlabel='$Mileage$')
plt.yticks(df.index, df.cars, fontsize=12)
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.show()

2.2 发散型文本

分隔文本类似于分隔条,如果您希望以一种美观和可表达的方式显示图表中每个项目的值,则首选文本。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-JWiNgYZA-1588929515292)(https://imgkr.cn-bj.ufileos.com/a737590f-102b-4730-9a81-0585d9331c76.png)]

# Prepare Data
df = pd.read_csv("data/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'green' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)
# Draw plot
plt.figure(figsize=(14,14), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
    t = plt.text(x, y, round(tex, 2), horizontalalignment='right' if x < 0 else 'left', 
                 verticalalignment='center', fontdict={'color':'red' if x < 0 else 'green', 'size':14})
# Decorations    
plt.yticks(df.index, df.cars, fontsize=12)
plt.title('Diverging Text Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.xlim(-2.5, 2.5)
plt.show()

2.3 发散型散点图

发散点图也类似于发散条。但是,与散布条相比,条的不存在会降低组之间的对比度和差异。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-MqUvA7ZN-1588929515293)(https://imgkr.cn-bj.ufileos.com/3be5f9f6-964a-46d3-a9b1-3421b85ba1de.png)]

# Prepare Data
df = pd.read_csv("data/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = ['red' if x < 0 else 'darkgreen' for x in df['mpg_z']]
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)
# Draw plot
plt.figure(figsize=(14,16), dpi= 80)
plt.scatter(df.mpg_z, df.index, s=450, alpha=.6, color=df.colors)
for x, y, tex in zip(df.mpg_z, df.index, df.mpg_z):
    t = plt.text(x, y, round(tex, 1), horizontalalignment='center', 
                 verticalalignment='center', fontdict={'color':'white'})
# Decorations
# Lighten borders
plt.gca().spines["top"].set_alpha(.3)
plt.gca().spines["bottom"].set_alpha(.3)
plt.gca().spines["right"].set_alpha(.3)
plt.gca().spines["left"].set_alpha(.3)
plt.yticks(df.index, df.cars)
plt.title('Diverging Dotplot of Car Mileage', fontdict={'size':20})
plt.xlabel('$Mileage$')
plt.grid(linestyle='--', alpha=0.5)
plt.xlim(-2.5, 2.5)
plt.show()

2.4 带有标记棒棒糖图

带有标记的棒棒糖提供了一种灵活的方式来可视化差异,方法是将重点放在您要引起注意的重要数据点上,并在图表中适当地进行推理。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EgQRKDzB-1588929515293)(https://imgkr.cn-bj.ufileos.com/dc986d04-1368-4f75-a27d-2190e8ff85d8.png)]

# Prepare Data
df = pd.read_csv("data/mtcars.csv")
x = df.loc[:, ['mpg']]
df['mpg_z'] = (x - x.mean())/x.std()
df['colors'] = 'black'
# color fiat differently
df.loc[df.cars == 'Fiat X1-9', 'colors'] = 'darkorange'
df.sort_values('mpg_z', inplace=True)
df.reset_index(inplace=True)
# Draw plot
import matplotlib.patches as patches
plt.figure(figsize=(14,16), dpi= 80)
plt.hlines(y=df.index, xmin=0, xmax=df.mpg_z, color=df.colors, alpha=0.4, linewidth=1)
plt.scatter(df.mpg_z, df.index, color=df.colors, s=[600 if x == 'Fiat X1-9' else 300 for x in df.cars], alpha=0.6)
plt.yticks(df.index, df.cars)
plt.xticks(fontsize=12)
# Annotate
plt.annotate('Mercedes Models', xy=(0.0, 11.0), xytext=(1.0, 11), xycoords='data', 
            fontsize=15, ha='center', va='center',
            bbox=dict(boxstyle='square', fc='firebrick'),
            arrowprops=dict(arrowstyle='-[, widthB=2.0, lengthB=1.5', lw=2.0, color='steelblue'), color='white')
# Add Patches
p1 = patches.Rectangle((-2.0, -1), width=.3, height=3, alpha=.2, facecolor='red')
p2 = patches.Rectangle((1.5, 27), width=.8, height=5, alpha=.2, facecolor='green')
plt.gca().add_patch(p1)
plt.gca().add_patch(p2)
# Decorate
plt.title('Diverging Bars of Car Mileage', fontdict={'size':20})
plt.grid(linestyle='--', alpha=0.5)
plt.show()

2.5 面积图

通过为轴和线之间的区域着色,面积图不仅将重点放在峰和谷上,而且还将重点放在高点和低点的持续时间上。高点持续时间越长,线下面积越大

import numpy as np
import pandas as pd
# Prepare Data
df = pd.read_csv("data/economics.csv", parse_dates=['date']).head(100)
x = np.arange(df.shape[0])
y_returns = (df.psavert.diff().fillna(0)/df.psavert.shift(1)).fillna(0) * 100
# Plot
plt.figure(figsize=(16,10), dpi= 80)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] >= 0, facecolor='green', interpolate=True, alpha=0.7)
plt.fill_between(x[1:], y_returns[1:], 0, where=y_returns[1:] <= 0, facecolor='red', interpolate=True, alpha=0.7)
# Annotate
plt.annotate('Peak \n1975', xy=(94.0, 21.0), xytext=(88.0, 28),
             bbox=dict(boxstyle='square', fc='firebrick'),
             arrowprops=dict(facecolor='steelblue', shrink=0.05), fontsize=15, color='white')
# Decorations
xtickvals = [str(m)[:3].upper()+"-"+str(y) for y,m in zip(df.date.dt.year, df.date.dt.month_name())]
plt.gca().set_xticks(x[::6])
plt.gca().set_xticklabels(xtickvals[::6], rotation=90, fontdict={'horizontalalignment': 'center', 'verticalalignment': 'center_baseline'})
plt.ylim(-35,35)
plt.xlim(1,100)
plt.title("Month Economics Return %", fontsize=22)
plt.ylabel('Monthly returns %')
plt.grid(alpha=0.5)
plt.show()

3.排行

3.1 有序条形图

有序条形图有效地传达了项目的排名顺序。但是,将指标的值加到图表上方,用户可以从图表本身获取准确的信息。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W09mAeUj-1588929515295)(https://imgkr.cn-bj.ufileos.com/342fe1d9-a39e-48e6-a05b-5e4a17c9966c.png)]

# Prepare Data
df_raw = pd.read_csv("data/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)
# Draw plot
import matplotlib.patches as patches
fig, ax = plt.subplots(figsize=(16,10), facecolor='white', dpi= 80)
ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=20)
# Annotate Text
for i, cty in enumerate(df.cty):
    ax.text(i, cty+0.5, round(cty, 1), horizontalalignment='center')
# Title, Label, Ticks and Ylim
ax.set_title('Bar Chart for Highway Mileage', fontdict={'size':22})
ax.set(ylabel='Miles Per Gallon', ylim=(0, 30))
plt.xticks(df.index, df.manufacturer.str.upper(), rotation=60, horizontalalignment='right', fontsize=12)
# Add patches to color the X axis labels
p1 = patches.Rectangle((.57, -0.005), width=.33, height=.13, alpha=.1, facecolor='green', transform=fig.transFigure)
p2 = patches.Rectangle((.124, -0.005), width=.446, height=.13, alpha=.1, facecolor='red', transform=fig.transFigure)
fig.add_artist(p1)
fig.add_artist(p2)
plt.show()

3.2 棒棒糖图

棒棒糖图表在视觉上令人愉悦,其功能与订购条形图相似。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4K3dGO1a-1588929515295)(https://imgkr.cn-bj.ufileos.com/06ebb41e-2651-4459-aedb-2603c7f62c2c.png)]

# Prepare Data
df_raw = pd.read_csv("data/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)
# Draw plot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.vlines(x=df.index, ymin=0, ymax=df.cty, color='firebrick', alpha=0.7, linewidth=2)
ax.scatter(x=df.index, y=df.cty, s=75, color='firebrick', alpha=0.7)
# Title, Label, Ticks and Ylim
ax.set_title('Lollipop Chart for Highway Mileage', fontdict={'size':22})
ax.set_ylabel('Miles Per Gallon')
ax.set_xticks(df.index)
ax.set_xticklabels(df.manufacturer.str.upper(), rotation=60, fontdict={'horizontalalignment': 'right', 'size':12})
ax.set_ylim(0, 30)
# Annotate
for row in df.itertuples():
    ax.text(row.Index, row.cty+.5, s=round(row.cty, 2), horizontalalignment= 'center', verticalalignment='bottom', fontsize=14)
plt.show()

3.3 点图

点状图传达了项目的等级顺序。并且由于它是沿水平轴对齐的,因此您可以更轻松地可视化这些点之间的距离。

image.png

# Prepare Data
df_raw = pd.read_csv("data/mpg_ggplot2.csv")
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', inplace=True)
df.reset_index(inplace=True)
# Draw plot
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.hlines(y=df.index, xmin=11, xmax=26, color='gray', alpha=0.7, linewidth=1, linestyles='dashdot')
ax.scatter(y=df.index, x=df.cty, s=75, color='firebrick', alpha=0.7)
# Title, Label, Ticks and Ylim
ax.set_title('Dot Plot for Highway Mileage', fontdict={'size':22})
ax.set_xlabel('Miles Per Gallon')
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'})
ax.set_xlim(10, 27)
plt.show()

3.4 坡度图

斜率图最适合比较给定人员/项目的“之前”和“之后”位置。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Ollmu5Jx-1588929515296)(https://imgkr.cn-bj.ufileos.com/10992c2c-708e-4317-b295-4c61a58a54d4.png)]

import matplotlib.lines as mlines
# Import Data
df = pd.read_csv("data/gdppercap.csv")
left_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1952'])]
right_label = [str(c) + ', '+ str(round(y)) for c, y in zip(df.continent, df['1957'])]
klass = ['red' if (y1-y2) < 0 else 'green' for y1, y2 in zip(df['1952'], df['1957'])]
# draw line
# https://stackoverflow.com/questions/36470343/how-to-draw-a-line-with-matplotlib/36479941
def newline(p1, p2, color='black'):
    ax = plt.gca()
    l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='red' if p1[1]-p2[1] > 0 else 'green', marker='o', markersize=6)
    ax.add_line(l)
    return l
fig, ax = plt.subplots(1,1,figsize=(14,14), dpi= 80)
# Vertical Lines
ax.vlines(x=1, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted')
ax.vlines(x=3, ymin=500, ymax=13000, color='black', alpha=0.7, linewidth=1, linestyles='dotted')
# Points
ax.scatter(y=df['1952'], x=np.repeat(1, df.shape[0]), s=10, color='black', alpha=0.7)
ax.scatter(y=df['1957'], x=np.repeat(3, df.shape[0]), s=10, color='black', alpha=0.7)
# Line Segmentsand Annotation
for p1, p2, c in zip(df['1952'], df['1957'], df['continent']):
    newline([1,p1], [3,p2])
    ax.text(1-0.05, p1, c + ', ' + str(round(p1)), horizontalalignment='right', verticalalignment='center', fontdict={'size':14})
    ax.text(3+0.05, p2, c + ', ' + str(round(p2)), horizontalalignment='left', verticalalignment='center', fontdict={'size':14})
# 'Before' and 'After' Annotations
ax.text(1-0.05, 13000, 'BEFORE', horizontalalignment='right', verticalalignment='center', fontdict={'size':18, 'weight':700})
ax.text(3+0.05, 13000, 'AFTER', horizontalalignment='left', verticalalignment='center', fontdict={'size':18, 'weight':700})
# Decoration
ax.set_title("Slopechart: Comparing GDP Per Capita between 1952 vs 1957", fontdict={'size':22})
ax.set(xlim=(0,4), ylim=(0,14000), ylabel='Mean GDP Per Capita')
ax.set_xticks([1,3])
ax.set_xticklabels(["1952", "1957"])
plt.yticks(np.arange(500, 13000, 2000), fontsize=12)
# Lighten borders
plt.gca().spines["top"].set_alpha(.0)
plt.gca().spines["bottom"].set_alpha(.0)
plt.gca().spines["right"].set_alpha(.0)
plt.gca().spines["left"].set_alpha(.0)
plt.show()

3.5 哑铃图

哑铃图传达了各个项目的“之前”和“之后”位置以及这些项目的排名顺序。如果您想可视化特定项目/计划对不同对象的效果,则它非常有用。

image.png

import matplotlib.lines as mlines
# Import Data
df = pd.read_csv("data/health.csv")
df.sort_values('pct_2014', inplace=True)
df.reset_index(inplace=True)
# Func to draw line segment
def newline(p1, p2, color='black'):
    ax = plt.gca()
    l = mlines.Line2D([p1[0],p2[0]], [p1[1],p2[1]], color='skyblue')
    ax.add_line(l)
    return l
# Figure and Axes
fig, ax = plt.subplots(1,1,figsize=(14,14), facecolor='#f7f7f7', dpi= 80)
# Vertical Lines
ax.vlines(x=.05, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.10, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.15, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
ax.vlines(x=.20, ymin=0, ymax=26, color='black', alpha=1, linewidth=1, linestyles='dotted')
# Points
ax.scatter(y=df['index'], x=df['pct_2013'], s=50, color='#0e668b', alpha=0.7)
ax.scatter(y=df['index'], x=df['pct_2014'], s=50, color='#a3c4dc', alpha=0.7)
# Line Segments
for i, p1, p2 in zip(df['index'], df['pct_2013'], df['pct_2014']):
    newline([p1, i], [p2, i])
# Decoration
ax.set_facecolor('#f7f7f7')
ax.set_title("Dumbell Chart: Pct Change - 2013 vs 2014", fontdict={'size':22})
ax.set(xlim=(0,.25), ylim=(-1, 27), ylabel='Mean GDP Per Capita')
ax.set_xticks([.05, .1, .15, .20])
ax.set_xticklabels(['5%', '15%', '20%', '25%'])
ax.set_xticklabels(['5%', '15%', '20%', '25%'])    
plt.show()

4.分布

4.1 连续直方分布图

直方图显示给定变量的频率分布。下图根据分类变量对频率条进行了分组,从而对连续变量和分类变量串联在一起有更深入的了解。

image.png

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Prepare data
x_var = 'displ'
groupby_var = 'class'
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]
# Draw
plt.figure(figsize=(16,9), dpi= 80)
colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, 30, stacked=True, density=False, color=colors[:len(vals)])
# Decoration
plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 25)
plt.xticks(ticks=bins[::3], labels=[round(b,1) for b in bins[::3]])
plt.show()

4.2 分类直方图

分类变量的直方图显示该变量的频率分布。通过为条形着色,您可以将分布与代表颜色的另一个分类变量关联起来。

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Prepare data
x_var = 'manufacturer'
groupby_var = 'class'
df_agg = df.loc[:, [x_var, groupby_var]].groupby(groupby_var)
vals = [df[x_var].values.tolist() for i, df in df_agg]
# Draw
plt.figure(figsize=(16,9), dpi= 80)
colors = [plt.cm.Spectral(i/float(len(vals)-1)) for i in range(len(vals))]
n, bins, patches = plt.hist(vals, df[x_var].unique().__len__(), stacked=True, density=False, color=colors[:len(vals)])
# Decoration
plt.legend({group:col for group, col in zip(np.unique(df[groupby_var]).tolist(), colors[:len(vals)])})
plt.title(f"Stacked Histogram of ${x_var}$ colored by ${groupby_var}$", fontsize=22)
plt.xlabel(x_var)
plt.ylabel("Frequency")
plt.ylim(0, 40)
plt.xticks(ticks=bins, labels=np.unique(df[x_var]).tolist(), rotation=90, horizontalalignment='left')
plt.show()

4.3 密度图

密度图是可视化连续变量分布的常用工具。通过使用’response’变量对它们进行分组,您可以检查X和Y之间的关系。以下情况仅出于代表性目的,描述城市里程的分布相对于汽缸数的变化。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-1n7Ik9UU-1588929515299)(https://imgkr.cn-bj.ufileos.com/c1c8c508-8ad8-4ee3-b94a-eb008e4345cf.png)]

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(16,10), dpi= 80)
sns.kdeplot(df.loc[df['cyl'] == 4, "cty"], shade=True, color="g", label="Cyl=4", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 5, "cty"], shade=True, color="deeppink", label="Cyl=5", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 6, "cty"], shade=True, color="dodgerblue", label="Cyl=6", alpha=.7)
sns.kdeplot(df.loc[df['cyl'] == 8, "cty"], shade=True, color="orange", label="Cyl=8", alpha=.7)
# Decoration
plt.title('Density Plot of City Mileage by n_Cylinders', fontsize=22)
plt.legend()
plt.show()

4.4 密度曲线直方图

带有直方图的密度曲线将两个图所传达的集体信息汇总在一起,因此您可以将它们都放在一个图中而不是两个图中

image.png

# Import Data
df = pd.read_csv("https://github.com/selva86/datasets/raw/master/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
sns.distplot(df.loc[df['class'] == 'compact', "cty"], color="dodgerblue", label="Compact", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
sns.distplot(df.loc[df['class'] == 'suv', "cty"], color="orange", label="SUV", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
sns.distplot(df.loc[df['class'] == 'minivan', "cty"], color="g", label="minivan", hist_kws={'alpha':.7}, kde_kws={'linewidth':3})
plt.ylim(0, 0.35)
# Decoration
plt.title('Density Plot of City Mileage by Vehicle Type', fontsize=22)
plt.legend()
plt.show()

4.5 Joy Plot

Joy Plot允许不同组的密度曲线重叠,这是一种可视化大量组相对于彼此分布的好方法。它看起来令人赏心悦目,并且清楚地传达了正确的信息。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-3cBIWv2w-1588929515300)(https://imgkr.cn-bj.ufileos.com/a6cca272-1d67-4590-9415-eb017d052edf.png)]

# !pip install joypy
# Import Data
mpg = pd.read_csv("data/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(16,10), dpi= 80)
fig, axes = joypy.joyplot(mpg, column=['hwy', 'cty'], by="class", ylim='own', figsize=(14,10))
# Decoration
plt.title('Joy Plot of City and Highway Mileage by Class', fontsize=22)
plt.show()

4.6 分布式点图

分布点图显示了按组划分的点的单变量分布。点越暗,该区域中数据点的集中度越高。通过对中间值进行不同的着色,各组的实际位置会立即变得明显。

import matplotlib.patches as mpatches
# Prepare Data
df_raw = pd.read_csv("data/mpg_ggplot2.csv")
cyl_colors = {4:'tab:red', 5:'tab:green', 6:'tab:blue', 8:'tab:orange'}
df_raw['cyl_color'] = df_raw.cyl.map(cyl_colors)
# Mean and Median city mileage by make
df = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.mean())
df.sort_values('cty', ascending=False, inplace=True)
df.reset_index(inplace=True)
df_median = df_raw[['cty', 'manufacturer']].groupby('manufacturer').apply(lambda x: x.median())
# Draw horizontal lines
fig, ax = plt.subplots(figsize=(16,10), dpi= 80)
ax.hlines(y=df.index, xmin=0, xmax=40, color='gray', alpha=0.5, linewidth=.5, linestyles='dashdot')
# Draw the Dots
for i, make in enumerate(df.manufacturer):
    df_make = df_raw.loc[df_raw.manufacturer==make, :]
    ax.scatter(y=np.repeat(i, df_make.shape[0]), x='cty', data=df_make, s=75, edgecolors='gray', c='w', alpha=0.5)
    ax.scatter(y=i, x='cty', data=df_median.loc[df_median.index==make, :], s=75, c='firebrick')
# Annotate    
ax.text(33, 13, "$red \; dots \; are \; the \: median$", fontdict={'size':12}, color='firebrick')
# Decorations
red_patch = plt.plot([],[], marker="o", ms=10, ls="", mec=None, color='firebrick', label="Median")
plt.legend(handles=red_patch)
ax.set_title('Distribution of City Mileage by Make', fontdict={'size':22})
ax.set_xlabel('Miles Per Gallon (City)', alpha=0.7)
ax.set_yticks(df.index)
ax.set_yticklabels(df.manufacturer.str.title(), fontdict={'horizontalalignment': 'right'}, alpha=0.7)
ax.set_xlim(1, 40)
plt.xticks(alpha=0.7)
plt.gca().spines["top"].set_visible(False)    
plt.gca().spines["bottom"].set_visible(False)    
plt.gca().spines["right"].set_visible(False)    
plt.gca().spines["left"].set_visible(False)   
plt.grid(axis='both', alpha=.4, linewidth=.1)
plt.show()

4.7 箱型图

箱形图是可视化分布的一种好方法,同时牢记中位数,第25个第75个四分位数和离群值。但是,在解释方框的大小时需要小心,这可能会扭曲该组中包含的点数。因此,手动在每个框中提供观察次数可以帮助克服此缺点。

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
sns.boxplot(x='class', y='hwy', data=df, notch=False)
# Add N Obs inside boxplot (optional)
def add_n_obs(df,group_col,y):
    medians_dict = {grp[0]:grp[1][y].median() for grp in df.groupby(group_col)}
    xticklabels = [x.get_text() for x in plt.gca().get_xticklabels()]
    n_obs = df.groupby(group_col)[y].size().values
    for (x, xticklabel), n_ob in zip(enumerate(xticklabels), n_obs):
        plt.text(x, medians_dict[xticklabel]*1.01, "#obs : "+str(n_ob), horizontalalignment='center', fontdict={'size':14}, color='white')
add_n_obs(df,group_col='class',y='hwy')    
# Decoration
plt.title('Box Plot of Highway Mileage by Vehicle Class', fontsize=22)
plt.ylim(10, 40)
plt.show()

4.8 点+ 箱型图

点+箱形图以箱形图的形式传送类似的信息,分为组。此外,这些点还使您感觉到每个组中有多少个数据点。

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
sns.boxplot(x='class', y='hwy', data=df, hue='cyl')
sns.stripplot(x='class', y='hwy', data=df, color='black', size=3, jitter=1)
for i in range(len(df['class'].unique())-1):
    plt.vlines(i+.5, 10, 45, linestyles='solid', colors='gray', alpha=0.2)
# Decoration
plt.title('Box Plot of Highway Mileage by Vehicle Class', fontsize=22)
plt.legend(title='Cylinders')
plt.show()

4.9 小提琴图

小提琴图是箱形图的视觉替代。小提琴的形状或面积取决于其可观察的次数。但是,小提琴图很难阅读,在专业环境中不常用。

# Import Data
df = pd.read_csv("data/mpg_ggplot2.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
sns.violinplot(x='class', y='hwy', data=df, scale='width', inner='quartile')
# Decoration
plt.title('Violin Plot of Highway Mileage by Vehicle Class', fontsize=22)
plt.show()

4.10 人口金字塔

人口金字塔可用于显示按体积排序的组的分布。或者,它也可以用来显示人口的逐步过滤,因为它在下面用于显示有多少人通过营销渠道的每个阶段。image.png

# Read data
df = pd.read_csv("data/email_campaign_funnel.csv")
# Draw Plot
plt.figure(figsize=(13,10), dpi= 80)
group_col = 'Gender'
order_of_bars = df.Stage.unique()[::-1]
colors = [plt.cm.Spectral(i/float(len(df[group_col].unique())-1)) for i in range(len(df[group_col].unique()))]
for c, group in zip(colors, df[group_col].unique()):
    sns.barplot(x='Users', y='Stage', data=df.loc[df[group_col]==group, :], order=order_of_bars, color=c, label=group)
# Decorations    
plt.xlabel("$Users$")
plt.ylabel("Stage of Purchase")
plt.yticks(fontsize=12)
plt.title("Population Pyramid of the Marketing Funnel", fontsize=22)
plt.legend()
plt.show()

4.11 分类图

seaborn库提供的分类图可用于可视化2个或更多分类变量彼此之间的计数分布。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sHmytr7R-1588929515303)(https://imgkr.cn-bj.ufileos.com/8a378260-32ba-45d0-a4e8-a277534ea96e.png)]

# Load Dataset
titanic = sns.load_dataset("titanic")
# Plot
g = sns.catplot("alive", col="deck", col_wrap=4,
                data=titanic[titanic.deck.notnull()],
                kind="count", height=3.5, aspect=.8, 
                palette='tab20')
fig.suptitle('sf')
plt.show()
# Load Dataset
titanic = sns.load_dataset("titanic")
# Plot
sns.catplot(x="age", y="embark_town",
            hue="sex", col="class",
            data=titanic[titanic.embark_town.notnull()],
            orient="h", height=5, aspect=1, palette="tab10",
            kind="violin", dodge=True, cut=0, bw=.2)


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
8月前
|
数据可视化 数据挖掘 Python
【数据分析与可视化】Matplotlib中动态rc参数设置详解与实战(图文解释 附源码)
【数据分析与可视化】Matplotlib中动态rc参数设置详解与实战(图文解释 附源码)
364 0
|
8月前
|
资源调度 自然语言处理 数据可视化
【数据分析与可视化】Matplotlib中十大绘图模型的讲解及实现(图文解释 附源码)
【数据分析与可视化】Matplotlib中十大绘图模型的讲解及实现(图文解释 附源码)
118 1
|
8月前
|
Python 容器
(学习笔记)matplotlib.pyplot模块下基本画图函数的整理
1. plt.plot()函数 主要用于画图,绘制点和线。 语法:
133 0
|
4月前
|
机器学习/深度学习 开发工具 git
matplotlib各种案例总结(python经典编程案例)
该文章汇总了使用matplotlib绘制不同类型图表的方法和案例,包括条形图、折线图等,并展示了如何调整颜色和线条样式等属性。
87 0
|
5月前
|
缓存 Linux 开发工具
【Deepin20系统】Linux系统中永久解决matplotlib画图中文乱码问题和使用seaborn中文乱码问题
在Deepin20系统下,如何解决Linux系统中matplotlib和seaborn绘图时出现的中文乱码问题,提供了临时和永久的解决方法,包括更换字体设置、修改配置文件和清除缓存等步骤。
146 4
|
7月前
|
Python
我终于懂得如何使用matplotlib进行画图
我终于懂得如何使用matplotlib进行画图
|
8月前
|
数据可视化 数据挖掘 C++
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
数据分析综合案例讲解,一文搞懂Numpy,pandas,matplotlib,seaborn技巧方法
177 2
|
8月前
|
Python
使用Matplotlib创建不同类型图表的案例
【4月更文挑战第29天】使用Python的matplotlib库创建了四种基本图形:折线图、散点图、柱状图和饼图。代码分别展示了如何绘制这些图表,包括设置X轴和Y轴标签以及标题。这只是matplotlib的基础,更多图表和高级功能可供进一步学习和探索。
80 1
|
8月前
|
数据可视化 搜索推荐 数据处理
Matplotlib在数据科学中的应用与案例分析
【4月更文挑战第17天】本文探讨了Matplotlib在数据科学中的应用,强调其作为Python中最常用的可视化库,提供多种图表类型、高度可定制性、交互式功能及与其他库的集成。通过一个案例分析展示了如何使用Matplotlib绘制城市人口分布的条形图,并添加交互式元素以增强数据探索。掌握Matplotlib能提升数据科学家的可视化能力和效率。
|
8月前
|
Python
又再肝3天,整理了65个Matplotlib案例,这能不收藏?
又再肝3天,整理了65个Matplotlib案例,这能不收藏?
133 0