谷歌开放自然语言理解软件源代码: 这项技术让电脑理解自然语言

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 谷歌开放自然语言理解软件源代码: 这项技术让电脑理解自然语言

从今天开始,谷歌给外界软件开发人员开放了自然语言算法, 并发布帮助开发者构建基于语言的应用和服务的工具,助力开发比经常产生误解聊天机器人更好的应用。


一个今天发布的工具,叫做 SyntaxNet,在有语境和常用注释的情况下,可以学会理解单词和短语的意思。这个工具使用了原先由谷歌发布叫 TensorFlow 的深学习框架。它是一个使用 TensorFlow 迄今构建的最复杂的部件。


谷歌还发布了预先训练的英语解析器,称为 Parsey McParseface。输入该英语解析器的文本将自动被分成句法组分如名词,动词,主题和对象。这使得计算机能容易地解析不明确的查询或命令。

sss.jpg

谷歌通常依赖于数据和机器学习的方法,Facebook 就正在试图培养计算机解析语法, 通过输入大量未标注的数据(见“教学机器理解我们”)。但是,谷歌的语言理解项目,在网上的一篇论文中说,是基于专家的专业知识。八年多来,语言专家一直在努力为谷歌注释文本。而最近的进展是把这些标注数据输入大型深学习神经网络的结果。


理解语言对于计算机非常困难的,因为语言通常是模糊的。搜索简单的 “Find me cats in hats”,可以解释为戴帽子或猫坐在帽子。虽然人类使用一般知识来理解这样的句子,谷歌的技术采用机器学习。其深度学习系统,经过语法文字的训练,做出这句话的最有可能的正确结构的判断。在 “Find me cats in hats” 这句话的情况下,这个算法假定搜索者时尚前卫的猫科动物有兴趣。


原文链接: https://www.technologyreview.com/s/601440/googles-algorithms-decode-language-like-a-trained-linguist/

相关文章
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【10月更文挑战第3天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将分析NLP的基本原理,介绍AI技术如何推动NLP的发展,并讨论当前的挑战和未来的趋势。通过本文,读者将了解AI技术在NLP中的重要性,以及如何利用这些技术解决实际问题。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【9月更文挑战第17天】本文主要介绍了AI技术在自然语言处理(NLP)领域的应用,包括文本分类、情感分析、机器翻译和语音识别等方面。通过实例展示了AI技术如何帮助解决NLP中的挑战性问题,并讨论了未来发展趋势。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度探索人工智能中的自然语言处理技术#### 一、
【10月更文挑战第28天】 本文旨在深入剖析人工智能领域中的自然语言处理(NLP)技术,探讨其发展历程、核心算法、应用现状及未来趋势。通过详尽的技术解读与实例分析,揭示NLP在智能交互、信息检索、内容理解等方面的变革性作用,为读者提供一幅NLP技术的全景图。 #### 二、
15 1
|
1月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
63 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
1天前
|
机器学习/深度学习 自然语言处理 算法
自然语言处理中的情感分析技术
自然语言处理中的情感分析技术
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理中的语义理解技术
自然语言处理中的语义理解技术
8 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【10月更文挑战第4天】本文将介绍人工智能(AI)在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译、情感分析等方面。我们将通过一些实际案例展示AI如何帮助人们更好地理解和使用自然语言。同时,我们也会探讨AI在NLP领域面临的挑战和未来发展方向。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI技术在自然语言处理中的应用
【9月更文挑战第22天】本文将探讨AI技术在自然语言处理(NLP)领域的应用,包括文本挖掘、情感分析、机器翻译等方面。我们将通过实例和代码示例,展示如何使用Python和相关库实现这些功能。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI技术在自然语言处理中的应用与挑战
【9月更文挑战第12天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将介绍NLP的基本概念、主要任务和应用场景,并分析当前AI技术在NLP中的局限性和未来发展趋势。通过实际案例和代码示例,我们将展示AI技术如何帮助解决NLP问题,并探讨如何克服现有挑战以实现更高效的自然语言处理系统。
|
3月前
|
Apache UED 数据安全/隐私保护
揭秘开发效率提升秘籍:如何通过Apache Wicket组件重用技巧大翻新用户体验
【8月更文挑战第31天】张先生在开发基于Apache Wicket的企业应用时,发现重复的UI组件增加了维护难度并影响加载速度。为优化体验,他提出并通过面板和组件重用策略解决了这一问题。例如,通过创建`ReusableLoginPanel`类封装登录逻辑,使得其他页面可以轻松复用此功能,从而减少代码冗余、提高开发效率及页面加载速度。这一策略还增强了应用的可维护性和扩展性,展示了良好组件设计的重要性。
52 0

热门文章

最新文章

下一篇
无影云桌面