用子查询计算非重复条目,加速五十倍!

简介: 本文说的这个技术是通用的,但为了解释说明,我们选用了 PostgreSQL。感谢 pgAdminIII 提供的解释性插图,这些插图有很大帮助。

本文说的这个技术是通用的,但为了解释说明,我们选用了 PostgreSQL。感谢 pgAdminIII 提供的解释性插图,这些插图有很大帮助。


很有用,但是却很慢

计算非重复的数目是SQL分析的一个灾难,显然,我们要在第一篇博文上讨论。

首先一点:我们如果有一个很大的数据集而且可以容忍它不精确。一个像 HyperLogLog 的概率统计器可能是你的首选(我们在以后的博客中会讲到HyperLogLog ),但是要追求快速精准的结果,子查询的方法会节省你很多时间。

让我们从一个简单的查询语句开始吧:哪一个dashboard用户访问的最频繁。

select

 dashboards.name,

 count(distinct time_on_site_logs.user_id)

from time_on_site_logs

join dashboards on time_on_site_logs.dashboard_id = dashboards.id

groupbyname

orderby count desc

首先,让我们假设在user_id 和 dashboard_id上都有高效的索引,并且日志行数要比user_id 和 dashboard_id多很多。

仅仅一千万行数据,查询语句就花费了48秒的时间。知道为什么吗?让我们看一下明了的图解吧。

image.png

慢的原因是数据库要遍历dashboards表和logs表的所有记录,然后JOIN操作,然后排序,之后才进行实际需要的分组和聚集操作。


先聚集,然后联合数据表

分组和聚集之后,一切数据库操作的代价都变小了,因为数据的数量变小了。在分组和聚集的时候,因为我们不需要dashboards.name,所以我们可以在JOIN操作前先进行聚集操作:

select

 dashboards.name,

 log_counts.ct

from dashboards

join (

 select

   dashboard_id,

   count(distinct user_id) as ct

 from time_on_site_logs

 groupby dashboard_id

) as log_counts

on log_counts.dashboard_id = dashboards.id

orderby log_counts.ct desc

语句运行了24秒,获得了2.4倍的性能提高。在来看一下,图解可以清楚无误的表明原因。

image.png

像我们预期地那样,join操作之前先进行了group-and-aggregate操作。快上加快,我们还可以在time_on_site_logs 表上加上索引。


第一步,让你的数据变小

我们还可以做的更好,我们对日志表做group-and-aggregate操作时,我们处理了一些无关的数据,其实没有必要。我们可以对每个分组上创建一个哈希集合,这样,在每个哈希桶中让每个dashboard_id 挑出那些需要被看到处理的数据。

不用做那么多工作,只用一个哈希集合,我们就可以先去除那些重复的值。然后我们在这个结果上做聚集操作。

select

 dashboards.name,

 log_counts.ct

from dashboards

join (

 select distinct_logs.dashboard_id,

 count(1) as ct

 from (

   selectdistinct dashboard_id, user_id

   from time_on_site_logs

 ) as distinct_logs

 groupby distinct_logs.dashboard_id

) as log_counts

on log_counts.dashboard_id = dashboards.id

orderby log_counts.ct desc

我们让去重和分组聚集一步一步进行,分成两个阶段。首先在(dashboard_id, user_id)对上去重,然后在这基础上做简单快速的分组计算工作,JOIN操作还是放在最后。

image.png

让我们来揭晓最终效果:总共花费了0.7秒,是上一次的28倍,最初的68倍。

一般来说,数据大小和数据位置是很重要的,表中的属性字段的可能取值个数相对很少,所以才有那么明显的效果,与数据总量相比较,(user_id, dashboard_id) 对的不同值很少。越多的不同的值,各行的数据越分散,所以分组和计算它们花费越长的时间,果然天下没有白吃的午餐。

也许你下次计算非重复结果需要花费一天的时间,试着用子查询的方法减轻它的负载。


要问一下,你们是何许人也?

我们做了 Periscope,一个可以使SQL数据分析更快的工具。我们在这里分享一下我们的工具蕴含的算法和技术。你可以到我们的主页上注册,从而作为我们的新客户,我们可以通知你相关事宜。


相关文章
|
6月前
|
存储 关系型数据库 MySQL
提高查询性能的秘密:深入剖析聚集、辅助、覆盖和联合索引
提高查询性能的秘密:深入剖析聚集、辅助、覆盖和联合索引
103 0
|
3月前
|
SQL 存储 关系型数据库
ADBPG&Greenplum成本优化问题之排查存在前缀字段相同的多个复合索引如何解决
ADBPG&Greenplum成本优化问题之排查存在前缀字段相同的多个复合索引如何解决
37 2
|
6月前
|
缓存 关系型数据库 MySQL
MySQL查询优化:提速查询效率的13大秘籍(合理使用索引合并、优化配置参数、使用分区优化性能、避免不必要的排序和group by操作)(下)
MySQL查询优化:提速查询效率的13大秘籍(合理使用索引合并、优化配置参数、使用分区优化性能、避免不必要的排序和group by操作)(下)
286 0
|
4月前
|
SQL
云架构数据倾斜问题之无效值的数据源表以避免长尾效应如何解决
云架构数据倾斜问题之无效值的数据源表以避免长尾效应如何解决
|
5月前
|
存储 关系型数据库 MySQL
【高频】什么是索引的下推和覆盖
【高频】什么是索引的下推和覆盖
215 2
|
6月前
|
SQL 存储 关系型数据库
深分页怎么导致索引失效了?提供6种优化的方案!
深分页怎么导致索引失效了?提供6种优化的方案!
|
存储 固态存储 测试技术
优化后,ES 做到了几十亿数据检索 3 秒返回!
优化后,ES 做到了几十亿数据检索 3 秒返回!
|
关系型数据库
PostgreSQL 百亿级数据范围查询, 分组排序窗口取值 极致优化 case
本文将对一个任意范围按ID分组查出每个ID对应的最新记录的CASE做一个极致的优化体验。优化后性能维持在可控范围内,任意数据量,毫秒级返回,性能平稳可控。比优化前性能提升1万倍。 CASE如下: 有一张数据表,结构: CREATE TABLE target_position
16114 0
|
存储 SQL 缓存
为什么索引可以让查询变快?终于有人说清楚了!
上表是一张真实的数据库表,其中每一行是一条记录,每条记录都有字段。假设上面的数据库是一个有10万条记录的大数据库。现在,我们想从10万条记录中搜索一些内容,那么挨着一个一个搜索无疑将花费很长的时间,这个时候我们在数据结构与算法里学的二分查找法就派上了用场。
为什么索引可以让查询变快?终于有人说清楚了!