DL之RetinaNet:RetinaNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之RetinaNet:RetinaNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

RetinaNet算法的简介(论文介绍)


        RetinaNet源自论文Focal Loss for Dense Object Detection用于密集目标检测的焦损失。


Abstract  

      The highest accuracy object detectors to date are based  on a two-stage approach popularized by R-CNN, where a  classifier is applied to a sparse set of candidate object locations.  In contrast, one-stage detectors that are applied  over a regular, dense sampling of possible object locations  have the potential to be faster and simpler, but have trailed  the accuracy of two-stage detectors thus far. In this paper,  we investigate why this is the case. We discover that the extreme  foreground-background class imbalance encountered  during training of dense detectors is the central cause. We  propose to address this class imbalance by reshaping the  standard cross entropy loss such that it down-weights the  loss assigned to well-classified examples. Our novel Focal  Loss focuses training on a sparse set of hard examples and  prevents the vast number of easy negatives from overwhelming  the detector during training. To evaluate the effectiveness  of our loss, we design and train a simple dense detector  we call RetinaNet. Our results show that when trained with  the focal loss, RetinaNet is able to match the speed of previous  one-stage detectors while surpassing the accuracy of  all existing state-of-the-art two-stage detectors. Code is at: https://github.com/facebookresearch/Detectron.

      迄今为止,精度最高的目标检测器是基于R-CNN推广的两阶段方法,其中分类器应用于稀疏的一组候选对象位置。相比之下,对可能的目标位置进行常规、密集采样的单级探测器有可能更快、更简单,但迄今仍落后于两级探测器的精度。在本文中,我们将探讨为什么会出现这种情况。我们发现,在密集探测器训练过程中所遇到的极端的前-后级不平衡是其主要原因。我们建议通过重新构造标准的交叉熵损失来解决这个类的不平衡,这样它就可以降低分配给分类良好的示例的损失。我们的新焦失聚焦训练集中在一组稀疏的硬例子上,防止大量的容易的负片在训练中压倒检测器。为了评估我们的损失的有效性,我们设计并训练了一个简单的高密度探测器,我们称之为RetinaNet。我们的结果表明,当使用聚焦损失训练时,视黄连能够在超过现有所有最先进的两级探测器精度的同时,与以前的单级探测器速度相匹配。代码如下:https://github.com/facebookresearch/Detectron。

Conclusion  

      In this work, we identify class imbalance as the primary  obstacle preventing one-stage object detectors from  surpassing top-performing, two-stage methods. To address  this, we propose the focal loss which applies a modulating  term to the cross entropy loss in order to focus learning  on hard negative examples. Our approach is simple and  highly effective. We demonstrate its efficacy by designing  a fully convolutional one-stage detector and report extensive  experimental analysis showing that it achieves stateof-the-art  accuracy and speed. Source code is available at https://github.com/facebookresearch/Detectron [12].

      在这项工作中,我们确定类不平衡是阻止单级对象检测器超越性能最好的两级方法的主要障碍。为了解决这个问题,我们提出了焦损失,它应用一个调制项的交叉熵损失,以便集中学习硬的负面例子。我们的方法简单而高效。我们设计了一种全卷积单级检测器来验证其有效性,并报告了大量的实验分析,结果表明它达到了最先进的精度和速度。源代码可从https://github.com/facebookresearch/Detectron[12]获得。


论文

Tsung-Yi Lin, Priya Goyal, Ross Girshick, KaimingHe, Piotr Dollár.

Focal Loss for Dense Object Detection. ICCV 2017.

https://arxiv.org/abs/1708.02002



0、实验结果


1、RetinaNet-50 VS RetinaNet-101


       在COCO数据集上,作者提出的RetinaNet-101-800模型,可以达到37.8mAP可超过其他以前提出的单阶段检测方法,并且检测速度是198ms。


image.png


2、在COCO test-dev上——分别与单阶段、两阶段模型比较


    目标检测单模型结果(边界框AP),与COCO test-dev的最新技术相比。RetinaNet可以达到40.8mAP,甚至可以超过两阶段方法。

注:该表展示了RetinaNet-101-800模型的结果,该模型经过尺度抖动训练。模型取得了最佳成绩,超越了其它单阶段和两阶段模型。

image.png




1、RetinaNet算法的特点及其贡献


找到妨碍单阶段目标检测器实现高准确度的主要原因:

-训练期间的前景-背景之间的类别不平衡

设计焦点损失(Focal Loss) 来解决这种类别不平衡问题,降低分配给分类良好例子的损失。

提出了单阶段RetinaNet网络架构,使用了焦点损失和多尺度特征金字塔。



RetinaNet算法的架构详解


DL之RetinaNet:RetinaNet算法的架构详解https://yunyaniu.blog.csdn.net/article/details/100010853






RetinaNet算法的案例应用


DL之RetinaNet:基于RetinaNet算法(keras框架)利用resnet50_coco数据集(.h5文件)实现目标检测


https://blog.csdn.net/qq_41185868/article/details/100109252

 


相关文章
|
19天前
|
Prometheus 监控 Kubernetes
Prometheus 在微服务架构中的应用
【8月更文第29天】随着微服务架构的普及,监控和跟踪各个服务的状态变得尤为重要。Prometheus 是一个开源的监控系统和时间序列数据库,非常适合用于微服务架构中的监控。本文将详细介绍 Prometheus 如何支持微服务架构下的监控需求,包括服务发现、服务间的监控指标收集以及如何配置 Prometheus 来适应这些需求。
46 0
|
4天前
|
存储 搜索推荐 数据库
MarkLogic在微服务架构中的应用:提供服务间通信和数据共享的机制
随着微服务架构的发展,服务间通信和数据共享成为关键挑战。本文介绍MarkLogic数据库在微服务架构中的应用,阐述其多模型支持、索引搜索、事务处理及高可用性等优势,以及如何利用MarkLogic实现数据共享、服务间通信、事件驱动架构和数据分析,提升系统的可伸缩性和可靠性。
15 5
|
4天前
|
机器学习/深度学习 测试技术 数据处理
KAN专家混合模型在高性能时间序列预测中的应用:RMoK模型架构探析与Python代码实验
Kolmogorov-Arnold网络(KAN)作为一种多层感知器(MLP)的替代方案,为深度学习领域带来新可能。尽管初期测试显示KAN在时间序列预测中的表现不佳,近期提出的可逆KAN混合模型(RMoK)显著提升了其性能。RMoK结合了Wav-KAN、JacobiKAN和TaylorKAN等多种专家层,通过门控网络动态选择最适合的专家层,从而灵活应对各种时间序列模式。实验结果显示,RMoK在多个数据集上表现出色,尤其是在长期预测任务中。未来研究将进一步探索RMoK在不同领域的应用潜力及其与其他先进技术的结合。
25 4
|
4天前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
12 3
|
11天前
|
传感器 Cloud Native 物联网
Micronaut在物联网中的应用探索:轻盈架构赋能万物互联新时代
【9月更文挑战第6天】Micronaut是一个现代、轻量级的Java框架,以其高效、易用及对云原生环境的支持,在物联网开发中展现出独特优势。它通过AOT编译技术优化应用,减少内存消耗,适合资源受限的设备。Micronaut支持反应式编程和HTTP/2,提升并发处理能力和网络传输效率。本文通过一个温度传感器数据收集服务的例子,展示了如何利用Micronaut简化物联网应用开发,使其成为该领域的理想选择。
28 3
|
17天前
|
存储 前端开发 数据库
神秘编程世界惊现强大架构!Web2py 的 MVC 究竟隐藏着怎样的神奇魔力?带你探索实际应用之谜!
【8月更文挑战第31天】在现代 Web 开发中,MVC(Model-View-Controller)架构被广泛应用,将应用程序分为模型、视图和控制器三个部分,有助于提高代码的可维护性、可扩展性和可测试性。Web2py 是一个采用 MVC 架构的 Python Web 框架,其中模型处理数据和业务逻辑,视图负责呈现数据给用户,控制器则协调模型和视图之间的交互。
22 0
|
18天前
|
运维 应用服务中间件 网络安全
自动化运维的新篇章:Ansible在现代IT架构中的应用与实践
【8月更文挑战第30天】随着信息技术的飞速发展,企业对运维效率和可靠性的要求日益增高。传统的手动运维方式已难以应对复杂多变的IT环境,自动化运维因此成为行业新宠。本文将深入探讨Ansible这一流行的自动化工具,如何通过其简洁的配置管理和强大的多节点部署能力,助力现代IT架构实现高效、可靠的运维管理。我们将从Ansible的核心概念入手,逐步解析其在配置管理、任务执行、应用部署等方面的实战应用,并结合代码示例,展示如何利用Ansible简化日常运维工作,提升运维质量和效率。无论你是运维新手还是资深专家,这篇文章都将为你提供宝贵的洞见和实操技巧。
|
12天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
12天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
|
1月前
|
算法
基于模糊控制算法的倒立摆控制系统matlab仿真
本项目构建了一个基于模糊控制算法的倒立摆控制系统,利用MATLAB 2022a实现了从不稳定到稳定状态的转变,并输出了相应的动画和收敛过程。模糊控制器通过对小车位置与摆的角度误差及其变化量进行模糊化处理,依据预设的模糊规则库进行模糊推理并最终去模糊化为精确的控制量,成功地使倒立摆维持在直立位置。该方法无需精确数学模型,适用于处理系统的非线性和不确定性。
基于模糊控制算法的倒立摆控制系统matlab仿真

热门文章

最新文章