DL之R-FCN:R-FCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之R-FCN:R-FCN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

R-FCN算法的简介(论文介绍)



Abstract  

     We present region-based, fully convolutional networks for accurate and efficient  object detection. In contrast to previous region-based detectors such as Fast/Faster  R-CNN [6, 18] that apply a costly per-region subnetwork hundreds of times, our  region-based detector is fully convolutional with almost all computation shared on  the entire image. To achieve this goal, we propose position-sensitive score maps  to address a dilemma between translation-invariance in image classification and  translation-variance in object detection. Our method can thus naturally adopt fully  convolutional image classifier backbones, such as the latest Residual Networks  (ResNets) [9], for object detection. We show competitive results on the PASCAL  VOC datasets (e.g., 83.6% mAP on the 2007 set) with the 101-layer ResNet.  Meanwhile, our result is achieved at a test-time speed of 170ms per image, 2.5-20×  faster than the Faster R-CNN counterpart. Code is made publicly available at: https://github.com/daijifeng001/r-fcn.

摘要

     我们提出了基于区域的全卷积网络,用于精确和有效的目标检测。与之前的基于区域的检测器(如Fast/Faster R-CNN)相比,我们的基于区域的检测器是完全卷积的,几乎所有计算在整个图像上共享。为了实现这一目标,我们提出了位置敏感的分数映射来解决图像分类中的平移不变性与目标检测中的平移方差之间的矛盾。因此,我们的方法可以很自然地采用完全卷积的图像分类器骨干,例如最新的ResNets[9]来进行目标检测。我们使用101层ResNet在PASCAL VOC数据集上显示了竞争结果(例如,在2007年的集上显示了83.6%的mAP)。同时,我们的结果在测试时的速度为每张图像170ms,比更快的R-CNN对应图像快2.5-20倍。代码公开提供:https://github.com/daijifeng001/r-fcn。

Conclusion and Future Work

     We presented Region-based Fully Convolutional Networks, a simple but accurate and efficient framework for object detection. Our system naturally adopts the state-of-the-art image classification backbones, such as ResNets, that are by design fully convolutional. Our method achieves accuracy competitive with the Faster R-CNN counterpart, but is much faster during both training and inference. We intentionally keep the R-FCN system presented in the paper simple. There have been a series of orthogonal extensions of FCNs that were developed for semantic segmentation (e.g., see [2]), as well as extensions of region-based methods for object detection (e.g., see [9, 1, 22]). We expect our system will easily enjoy the benefits of the progress in the field.

结论及未来工作

     提出了一种基于区域的全卷积网络,这是一种简单、准确、高效的目标检测框架。我们的系统自然采用了最先进的图像分类骨干,如ResNets,它的设计完全是卷积的。我们的方法达到了精度与更快的R-CNN竞争对手,但在训练和推理过程中都快得多。我们有意使本文中介绍的R-FCN系统保持简单。已有一系列针对语义分割的FCNs正交扩展(如[2]),以及基于区域的对象检测方法的扩展(如[9,1,22])。我们希望我们的系统能够很容易地从这一领域的进展中获益。


论文

Jifeng Dai, Yi Li, KaimingHe, Jian Sun.

R-FCN: Object detection via region-based fully convolutional networks. NIPS, 2016

https://arxiv.org/abs/1605.06409



1、Motivation: Sharing is Caring


image.png


      对Faster R-CNN结构进行了改造,将RoI层之后的卷积都移到了RoI层之前,并利用一种位置敏感的特征图来评估各个类别的概率,在保持较高定位准确度的同时,大幅提高检测速率。



7、各种策略下的实验结果


1、AtrousConvolution技巧


•将ResNet-101的有效步幅从32像素降低到16像素,从而提高了得分图的分辨率。

•Conv4和之前的所有层(stride = 16)都保持不变; 将第一个conv5中的stride = 2修改为stride = 1

•Conv5的所有卷积滤波器都通过“带孔算法”(Algorithmeà rous)进行修改,以补偿减小的步幅。




 The à troustrick improves mAPby 2.6 points.

image.png


2、Effect of Position Sensitivity on fully convolutional strategies


image.png



3、Standard Benchmarks: VOC 2007

image.png




4、Standard Benchmarks: VOC 2012

image.png




5、The Effect of Depth


当深度从50增加到101时,检测精度会增加,但是当深度达到152时,检测精度会变得饱和。

image.png




6、The Effect of Proposal Type


Works pretty well with any proposal method

Selective Search (SS) and Edge Boxes (EB)

image.png






 


目录
打赏
0
0
0
0
1043
分享
相关文章
MapReduce在实现PageRank算法中的应用
总结来说,在实现PageRank算法时使用MapReduce能够有效地进行大规模并行计算,并且具有良好的容错性和可扩展性。
126 76
|
15天前
|
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
21 3
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
46 12
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
110 3
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
402 69
从单体到微服务:如何借助 Spring Cloud 实现架构转型
智慧工地云平台的技术架构解析:微服务+Spring Cloud如何支撑海量数据?
慧工地解决方案依托AI、物联网和BIM技术,实现对施工现场的全方位、立体化管理。通过规范施工、减少安全隐患、节省人力、降低运营成本,提升工地管理的安全性、效率和精益度。该方案适用于大型建筑、基础设施、房地产开发等场景,具备微服务架构、大数据与AI分析、物联网设备联网、多端协同等创新点,推动建筑行业向数字化、智能化转型。未来将融合5G、区块链等技术,助力智慧城市建设。
服务架构的演进:从单体到微服务的探索之旅
随着企业业务的不断拓展和复杂度的提升,对软件系统架构的要求也日益严苛。传统的架构模式在应对现代业务场景时逐渐暴露出诸多局限性,于是服务架构开启了持续演变之路。从单体架构的简易便捷,到分布式架构的模块化解耦,再到微服务架构的精细化管理,企业对技术的选择变得至关重要,尤其是 Spring Cloud 和 Dubbo 等微服务技术的对比和应用,直接影响着项目的成败。 本篇文章会从服务架构的演进开始分析,探索从单体项目到微服务项目的演变过程。然后也会对目前常见的微服务技术进行对比,找到目前市面上所常用的技术给大家进行讲解。
131 1
服务架构的演进:从单体到微服务的探索之旅

热门文章

最新文章