Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略

简介: Dataset之COCO数据集:COCO数据集的简介、下载、使用方法之详细攻略
+关注继续查看

COCO数据集的简介




       MS COCO的全称是Microsoft Common Objects in Context,起源于微软于2014年出资标注的Microsoft COCO数据集,与ImageNet竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。

       COCO数据集是一个大型的、丰富的物体检测,分割和字幕数据集。这个数据集以scene understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。目前为止有语义分割的最大数据集,提供的类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个。




官网地址:http://cocodataset.org


0、COCO数据集的80个类别—YoloV3算法采用的数据集


person(人)  

bicycle(自行车)  car(汽车)  motorbike(摩托车)  aeroplane(飞机)  bus(公共汽车)  train(火车)  truck(卡车)  boat(船)  

traffic light(信号灯)  fire hydrant(消防栓)  stop sign(停车标志)  parking meter(停车计费器)  bench(长凳)  

bird(鸟)  cat(猫)  dog(狗)  horse(马)  sheep(羊)  cow(牛)  elephant(大象)  bear(熊)  zebra(斑马)  giraffe(长颈鹿)  

backpack(背包)  umbrella(雨伞)  handbag(手提包)  tie(领带)  suitcase(手提箱)  

frisbee(飞盘)  skis(滑雪板双脚)  snowboard(滑雪板)  sports ball(运动球)  kite(风筝) baseball bat(棒球棒)  baseball glove(棒球手套)  skateboard(滑板)  surfboard(冲浪板)  tennis racket(网球拍)  

bottle(瓶子)  wine glass(高脚杯)  cup(茶杯)  fork(叉子)  knife(刀)

spoon(勺子)  bowl(碗)  

banana(香蕉)  apple(苹果)  sandwich(三明治)  orange(橘子)  broccoli(西兰花)  carrot(胡萝卜)  hot dog(热狗)  pizza(披萨)  donut(甜甜圈)  cake(蛋糕)

chair(椅子)  sofa(沙发)  pottedplant(盆栽植物)  bed(床)  diningtable(餐桌)  toilet(厕所)  tvmonitor(电视机)  

laptop(笔记本)  mouse(鼠标)  remote(遥控器)  keyboard(键盘)  cell phone(电话)  

microwave(微波炉)  oven(烤箱)  toaster(烤面包器)  sink(水槽)  refrigerator(冰箱)

book(书)  clock(闹钟)  vase(花瓶)  scissors(剪刀)  teddy bear(泰迪熊)  hair drier(吹风机)  toothbrush(牙刷)


1、COCO数据集的意义


       MS COCO的全称是Microsoft Common Objects in Context,起源于是微软于2014年出资标注的Microsoft COCO数据集,与ImageNet 竞赛一样,被视为是计算机视觉领域最受关注和最权威的比赛之一。

       当在ImageNet竞赛停办后,COCO竞赛就成为是当前目标识别、检测等领域的一个最权威、最重要的标杆,也是目前该领域在国际上唯一能汇集Google、微软、Facebook以及国内外众多顶尖院校和优秀创新企业共同参与的大赛。

       该数据集主要解决3个问题:目标检测,目标之间的上下文关系,目标的2维上的精确定位。COCO数据集有91类,虽然比ImageNet和SUN类别少,但是每一类的图像多,这有利于获得更多的每类中位于某种特定场景的能力,对比PASCAL VOC,其有更多类和图像。


1、COCO目标检测挑战


COCO数据集包含20万个图像;

80个类别中有超过50万个目标标注,它是最广泛公开的目标检测数据库;

平均每个图像的目标数为7.2,这些是目标检测挑战的著名数据集。

2、COCO数据集的特点


COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:


Object segmentation

Recognition in context

Superpixel stuff segmentation

330K images (>200K labeled)

1.5 million object instances

80 object categories

91 stuff categories

5 captions per image

250,000 people with keypoints

对象分割;

在上下文中可识别;

超像素分割;

330K图像(> 200K标记);

150万个对象实例;

80个对象类别;

91个类别;

每张图片5个字幕;

有关键点的250,000人;

3、数据集的大小和版本


大小:25 GB(压缩)

记录数量: 330K图像、80个对象类别、每幅图像有5个标签、25万个关键点。

        COCO数据集分两部分发布,前部分于2014年发布,后部分于2015年,2014年版本:82,783 training, 40,504 validation, and 40,775 testing images,有270k的segmented people和886k的segmented object;2015年版本:165,482 train, 81,208 val, and 81,434 test images。

(1)、2014年版本的数据,一共有20G左右的图片和500M左右的标签文件。标签文件标记了每个segmentation的像素精确位置+bounding box的精确坐标,其精度均为小数点后两位。


COCO数据集的下载


官网地址:http://cocodataset.org/#download


1、2014年数据集的下载


train2014:http://images.cocodataset.org/zips/train2014.zip

val2014:http://images.cocodataset.org/zips/val2014.zip


http://msvocds.blob.core.windows.net/coco2014/train2014.zip


2、2017的数据集的下载


http://images.cocodataset.org/zips/train2017.zip

http://images.cocodataset.org/annotations/annotations_trainval2017.zip


http://images.cocodataset.org/zips/val2017.zip

http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip


http://images.cocodataset.org/zips/test2017.zip

http://images.cocodataset.org/annotations/image_info_test2017.zip


train2017

train2017:http://images.cocodataset.org/zips/train2017.zip

train2017 annotations:http://images.cocodataset.org/annotations/annotations_trainval2017.zip

val2017

val2017:http://images.cocodataset.org/zips/val2017.zip

val2017 annotations:http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip

test2017

test2017:http://images.cocodataset.org/zips/test2017.zip

test2017 info:http://images.cocodataset.org/annotations/image_info_test2017.zip


COCO数据集的使用方法


1、基础用法


(1)、Download Images and Annotations from [MSCOCO] 后期更新……

(2)、Get the coco code 后期更新……

(3)、Build the coco code 后期更新……

(4)、Split the annotation to many files per image and get the image size info 后期更新……

(5)、 Create the LMDB file 后期更新……


版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
Dataset之Handwritten Digits:Handwritten Digits(手写数字图片识别)数据集简介、安装、使用方法之详细攻略
Dataset之Handwritten Digits:Handwritten Digits(手写数字图片识别)数据集简介、安装、使用方法之详细攻略
72 0
Redis数据库简介与(CentOS 7)编译安装
Redis数据库简介与(CentOS 7)编译安装
17 0
用过SDE连接,添加数据集Dataset
版权声明:欢迎评论和转载,转载请注明来源。 https://blog.csdn.net/zy332719794/article/details/8966225 第一步:添加En...
619 0
基于DataHub采集数据的营销报告分析
本案例是基于阿里云上的DataHub收集营销数据,并通过MaxCompute对营销数据进行分析。下面主要介绍如何用DataHub收集营销数据,以及在MaxCompute中如何对数据进行分析。
1746 0
sql datalength与len区别用法
原文:sql datalength与len区别用法 len ( string_expression )参数:要计算的字符串 len() 函数len 函数返回文本字段中值的长度。 sql len() 语法select len(column_name) from table_name 我们希望取得 "city" 列中值的长度。
622 0
帆软FineReport如何使用程序数据集
大多数情况下,FineReport直接在设计器里使用“数据集查询”,直接写SQL就能满足报表要求,但对于一些复杂的报表,有时候SQL处理并不方便,这时可以把查询结果在应用层做一些预处理后,再传递给报表,即所谓的“程序数据集”,FineReport的帮助文档上给了一个示例: 1 package com.
1511 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载