目录
MNIST数据集简介
0、简介
1、mnist 对象中各个属性的含义和大小
2、数据集的应用—训练和预测
MNIST数据集下载
1、基于python语言根据爬虫技术自动下载MNIST数据集
2、TensorFlow的封装下使用MNIST数据集
数据集增强代码演示
MNIST数据集简介
四个gz文件,一共大约11M左右。
0、简介
MNIST是一个非常有名的手写体数字识别数据集(手写数字灰度图像数据集),在很多资料中,这个数据集都会被用作深度学习的入门样例。
MNIST数据集是由0 到9 的数字图像构成的。训练图像有6 万张,测试图像有1 万张。MNIST数据集是NIST数据集的一个子集,它包含了60000张图片作为训练数据,10000张图片作为测试数据。每一张图片都有对应的标签数字,训练图像一共高60000 张,供研究人员训练出合适的模型。测试图像一共高10000 张,供研究人员测试训练的模型的性能。
单张图片样本的矩阵表示
在上图中右侧显示了一张数字1的图片,而右侧显示了这个图片所对应的像素矩阵。
MNIST 数据集主要由一些手写数字的图片和相应的标签组成,图片一共高10 类, 分别对应从0~9 ,共10 个阿拉伯数字。在MNIST数据集中的每一张图片都代表了0~9中的一个数字。
MNIST的图像,每张图片是包含28 像素× 28 像素的灰度图像(1 通道),各个像素的取值在0 到255 之间。每个图像数据都相应地标有数字标签。每张图片都由一个28 ×28 的矩阵表示,每张图片都由一个784 维的向量表示(28*28=784),如图所示。图片的大小都为28*28,且数字都会出现在图片的正中间。 处理后的每一张图片是一个长度为784的一维数组,这个数组中的元素对应了图片像素矩阵中的每一个数字。