DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略(三)

简介: DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略

其他概念


1、shape


(1)、指定输入数据的shape  


模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。


(2)、关于张量shape  更多详细内容参考这个博客https://blog.csdn.net/u013378306/article/details/56281549

  在Keras和Tensorflow中,数据是以张量的形式表示的,张量的形状就是shape。TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通即Flow。


  你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.


(1)input_shape就是指输入张量的shape。例如 input_dim=784,说明输入是一个784维的向量,这相当于一个一阶的张量,它的shape就是(784,)

image.png



2、回调


1、回调是传递给模型的对象,用于在训练期间自定义该模型并扩展其行为。你可以编写自定义回调,也可以使用包含以下方法的内置tf.keras.callbacks:


tf.keras.callbacks.ModelCheckpoint        '定期保存模型的检查点。'

tf.keras.callbacks.LearningRateScheduler  '动态更改学习速率。'

tf.keras.callbacks.EarlyStopping          '在验证效果不再改进时中断训练。'

tf.keras.callbacks.TensorBoard            '使用TensorBoard 监控模型的行为。'

2、要使用tf.keras.callbacks.Callback,请将其传递给模型的fit 方法:


callbacks = [

   # Interrupt training if `val_loss` stops improving for over 2 epochs

   tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),

   # Write TensorBoard logs to `./logs` directory

   tf.keras.callbacks.TensorBoard(log_dir='./logs')

   ]

model.fit(data, labels, batch_size=32, epochs=5, callbacks=callbacks,

         validation_data=(val_data, val_labels))

3、保存和恢复


(1)仅限权重:使用tf.keras.Model.save_weights 保存并加载模型的权重


model = tf.keras.Sequential([layers.Dense(64, activation='relu'),

                            layers.Dense(10, activation='softmax')])

model.compile(optimizer=tf.train.AdamOptimizer(0.001),

             loss='categorical_crossentropy',metrics=['accuracy'])

'默认情况下,会以TensorFlow 检查点文件格式保存模型的权重'

# Save weights to a TensorFlow Checkpoint file

model.save_weights('./weights/my_model')

# Restore the model's state,# this requires a model with the same architecture.

model.load_weights('./weights/my_model')

'权重也可以另存为KerasHDF5 格式(Keras多后端实现的默认格式)'

# Save weights to a HDF5

filemodel.save_weights('my_model.h5', save_format='h5')

# Restore the model's statemodel.

load_weights('my_model.h5')

(2)、仅限配置:可以保存模型的配置,此操作会对模型架构(不含任何权重)进行序列化。即使没有定义原始模型的代码,保存的配置也可以重新创建并初始化相同的模型。Keras 支持JSON 和YAML 序列化格式:


# Serialize a model to JSON format

json_string = model.to_json()

json_string

import json

import pprint

pprint.pprint(json.loads(json_string))

'从json重新创建模型'

fresh_model = tf.keras.models.model_from_json(json_string)

(3)整个模型:整个模型可以保存到一个文件中,其中包含权重值、模型配置乃至优化器配置。这样,您就可以对模型设置检查点并稍后从完全相同的状态继续训练,而无需访问原始代码。


# Create a trivial model

model = tf.keras.Sequential([layers.Dense(10, activation='softmax', input_shape=(32,)),

                            layers.Dense(10, activation='softmax')])

model.compile(optimizer='rmsprop',loss='categorical_crossentropy',

             metrics=['accuracy'])

model.fit(data, labels, batch_size=32, epochs=5)

# Save entire model to a HDF5 file

model.save('my_model.h5')

# Recreate the exact same model, including weights and optimizer.

model = tf.keras.models.load_model('my_model.h5')


4、动态图机制:Eager Execution


     不同于TensorFlow的静态机制。


Eager Execution 是一种命令式编程环境,可立即评估操作。此环境对于Keras 并不是必需的,但是受tf.keras 的支持,并且可用于检查程序和调试。

所有tf.keras 模型构建API 都与Eager Execution 兼容。虽然可以使用Sequential 和函数式API,但Eager Execution 对模型子类化和构建自定义层特别有用。

与通过组合现有层来创建模型的API 不同,函数式API 要求你编写前向传播代码。


Keras的中的模型使用


1、查找使用方法


from keras.models import Sequential

model = Sequential()

help(model.compile)

image.png


(1)、model.compile()函数,用来配置训练模型参数,可以指定你设想的随机梯度下降中的网络的损失函数、优化方式等参数(2)、model.summary()函数,Prints a string summary of the network.

(3)、model.fit_generator()函数,Fits the model on data generated batch-by-batch by a Python generator.The generator is run in parallel to the model, for efficiency.For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU.

(4)、K.placeholder()    #用于得到传递进来的真实的训练样本



2、Keras的 6 种预训练模型


     目前可知,Keras 已经将这 6 种预训练模型集成到了库中: VGG16、VGG19、ResNet50、Inception v3、Xception、MobileNet。VGG 网络以及从 2012 年以来的 AlexNet 都遵循现在的基本卷积网络的原型布局:一系列卷积层、最大池化层和激活层,最后还有一些全连接的分类层。MobileNet 本质上是为移动应用优化后的 Xception 架构的流线型(streamline)版本。



3、Keras深度学习框架的注意事项(自动下载存放路径等)、使用方法之详细攻略


DL之Keras: Keras深度学习框架的注意事项(自动下载存放路径等)、使用方法之详细攻略


相关文章
|
28天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
170 73
|
12天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
69 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
1月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
81 21
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
58 2
|
1月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
139 5
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的原理与应用:开启智能时代的大门
深度学习的原理与应用:开启智能时代的大门
117 16
|
28天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
85 19
|
28天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
85 7
|
1月前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
1月前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。