DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略(三)

简介: DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略

其他概念


1、shape


(1)、指定输入数据的shape  


模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。


(2)、关于张量shape  更多详细内容参考这个博客https://blog.csdn.net/u013378306/article/details/56281549

  在Keras和Tensorflow中,数据是以张量的形式表示的,张量的形状就是shape。TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通即Flow。


  你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.


(1)input_shape就是指输入张量的shape。例如 input_dim=784,说明输入是一个784维的向量,这相当于一个一阶的张量,它的shape就是(784,)

image.png



2、回调


1、回调是传递给模型的对象,用于在训练期间自定义该模型并扩展其行为。你可以编写自定义回调,也可以使用包含以下方法的内置tf.keras.callbacks:


tf.keras.callbacks.ModelCheckpoint        '定期保存模型的检查点。'

tf.keras.callbacks.LearningRateScheduler  '动态更改学习速率。'

tf.keras.callbacks.EarlyStopping          '在验证效果不再改进时中断训练。'

tf.keras.callbacks.TensorBoard            '使用TensorBoard 监控模型的行为。'

2、要使用tf.keras.callbacks.Callback,请将其传递给模型的fit 方法:


callbacks = [

   # Interrupt training if `val_loss` stops improving for over 2 epochs

   tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),

   # Write TensorBoard logs to `./logs` directory

   tf.keras.callbacks.TensorBoard(log_dir='./logs')

   ]

model.fit(data, labels, batch_size=32, epochs=5, callbacks=callbacks,

         validation_data=(val_data, val_labels))

3、保存和恢复


(1)仅限权重:使用tf.keras.Model.save_weights 保存并加载模型的权重


model = tf.keras.Sequential([layers.Dense(64, activation='relu'),

                            layers.Dense(10, activation='softmax')])

model.compile(optimizer=tf.train.AdamOptimizer(0.001),

             loss='categorical_crossentropy',metrics=['accuracy'])

'默认情况下,会以TensorFlow 检查点文件格式保存模型的权重'

# Save weights to a TensorFlow Checkpoint file

model.save_weights('./weights/my_model')

# Restore the model's state,# this requires a model with the same architecture.

model.load_weights('./weights/my_model')

'权重也可以另存为KerasHDF5 格式(Keras多后端实现的默认格式)'

# Save weights to a HDF5

filemodel.save_weights('my_model.h5', save_format='h5')

# Restore the model's statemodel.

load_weights('my_model.h5')

(2)、仅限配置:可以保存模型的配置,此操作会对模型架构(不含任何权重)进行序列化。即使没有定义原始模型的代码,保存的配置也可以重新创建并初始化相同的模型。Keras 支持JSON 和YAML 序列化格式:


# Serialize a model to JSON format

json_string = model.to_json()

json_string

import json

import pprint

pprint.pprint(json.loads(json_string))

'从json重新创建模型'

fresh_model = tf.keras.models.model_from_json(json_string)

(3)整个模型:整个模型可以保存到一个文件中,其中包含权重值、模型配置乃至优化器配置。这样,您就可以对模型设置检查点并稍后从完全相同的状态继续训练,而无需访问原始代码。


# Create a trivial model

model = tf.keras.Sequential([layers.Dense(10, activation='softmax', input_shape=(32,)),

                            layers.Dense(10, activation='softmax')])

model.compile(optimizer='rmsprop',loss='categorical_crossentropy',

             metrics=['accuracy'])

model.fit(data, labels, batch_size=32, epochs=5)

# Save entire model to a HDF5 file

model.save('my_model.h5')

# Recreate the exact same model, including weights and optimizer.

model = tf.keras.models.load_model('my_model.h5')


4、动态图机制:Eager Execution


     不同于TensorFlow的静态机制。


Eager Execution 是一种命令式编程环境,可立即评估操作。此环境对于Keras 并不是必需的,但是受tf.keras 的支持,并且可用于检查程序和调试。

所有tf.keras 模型构建API 都与Eager Execution 兼容。虽然可以使用Sequential 和函数式API,但Eager Execution 对模型子类化和构建自定义层特别有用。

与通过组合现有层来创建模型的API 不同,函数式API 要求你编写前向传播代码。


Keras的中的模型使用


1、查找使用方法


from keras.models import Sequential

model = Sequential()

help(model.compile)

image.png


(1)、model.compile()函数,用来配置训练模型参数,可以指定你设想的随机梯度下降中的网络的损失函数、优化方式等参数(2)、model.summary()函数,Prints a string summary of the network.

(3)、model.fit_generator()函数,Fits the model on data generated batch-by-batch by a Python generator.The generator is run in parallel to the model, for efficiency.For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU.

(4)、K.placeholder()    #用于得到传递进来的真实的训练样本



2、Keras的 6 种预训练模型


     目前可知,Keras 已经将这 6 种预训练模型集成到了库中: VGG16、VGG19、ResNet50、Inception v3、Xception、MobileNet。VGG 网络以及从 2012 年以来的 AlexNet 都遵循现在的基本卷积网络的原型布局:一系列卷积层、最大池化层和激活层,最后还有一些全连接的分类层。MobileNet 本质上是为移动应用优化后的 Xception 架构的流线型(streamline)版本。



3、Keras深度学习框架的注意事项(自动下载存放路径等)、使用方法之详细攻略


DL之Keras: Keras深度学习框架的注意事项(自动下载存放路径等)、使用方法之详细攻略


相关文章
|
5天前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
14 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
1天前
|
调度 开发者 网络架构
探索Python中的异步编程:深入理解asyncio库
【9月更文挑战第32天】在现代软件开发中,异步编程已成为提升性能和响应性的关键策略之一。本文将深入探讨Python的asyncio库,一个强大的异步I/O框架,它允许开发者编写单线程并发代码,同时处理多个任务而无需复杂的多线程或多进程编程。通过本文,你将学习到如何利用asyncio来构建高效、可扩展的应用程序,并了解其背后的原理和设计哲学。
7 2
|
1天前
|
机器学习/深度学习 自然语言处理
深度学习中的模型压缩技术:精度与效率的平衡
在深度学习领域,模型压缩技术已经成为一项关键技术。它通过减少模型的参数数量和计算量,实现了模型的轻量化和高效化。本文将介绍几种常见的模型压缩方法,包括参数剪枝、量化、知识蒸馏等,并探讨这些方法如何帮助模型在保持精度的同时提高运行效率。我们将分析每种方法的原理、实现步骤以及优缺点,并通过实验结果对比不同方法的性能表现。最后,我们将讨论模型压缩技术在未来可能的发展方向及其应用前景。
6 1
|
3天前
|
数据挖掘 Python
【Python】应用:pyproj地理计算库应用
这篇博客介绍了 `pyproj` 地理计算库的应用,涵盖地理坐标系统转换与地图投影。通过示例代码展示了如何进行经纬度与UTM坐标的互转,并利用 `pyproj.Geod` 计算两点间的距离及方位角,助力地理数据分析。 安装 `pyproj`:`pip install pyproj`。更多内容欢迎关注本博客,一起学习进步! Pancake 🍰 不迷路。😉*★,°*:.☆( ̄▽ ̄)/$:*.°★* 😏
|
5天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护
14 1
|
4天前
|
数据挖掘 API 数据处理
Python 数据分析及预处理常用库
Python自身数据分析功能有限,需借助第三方库增强。常用库包括NumPy、pandas、Matplotlib等。NumPy由Numeric发展而来,提供了多维数组对象及各种API,支持高效的数据处理,如数学、逻辑运算等,常作为其他高级库如pandas和Matplotlib的依赖库。其内置函数处理速度极快,建议优先使用以提升程序效率。
7 0
|
5天前
|
UED Python
Python requests库下载文件时展示进度条的实现方法
以上就是使用Python `requests`库下载文件时展示进度条的一种实现方法,它不仅简洁易懂,而且在实际应用中非常实用。
13 0
|
5天前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
3天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习在图像识别中的应用
【9月更文挑战第30天】本文将深入探讨深度学习技术在图像识别领域的应用。我们将首先介绍深度学习的基本原理,然后通过一个实际的代码示例,展示如何使用深度学习进行图像识别。最后,我们将讨论深度学习在图像识别中的优势和挑战。
|
6天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习在图像识别中的应用
【9月更文挑战第27天】本文将探讨深度学习技术如何改变图像识别领域。我们将通过实际案例和代码示例,展示深度学习模型如何从原始像素中学习和提取特征,以及如何使用这些特征进行准确的图像分类。
26 10
下一篇
无影云桌面