DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略(三)

简介: DL框架之Keras:深度学习框架Keras框架的简介、安装(Python库)、相关概念、Keras模型使用、使用方法之详细攻略

其他概念


1、shape


(1)、指定输入数据的shape  


模型需要知道输入数据的shape,因此,Sequential的第一层需要接受一个关于输入数据shape的参数,后面的各个层则可以自动的推导出中间数据的shape,因此不需要为每个层都指定这个参数。


(2)、关于张量shape  更多详细内容参考这个博客https://blog.csdn.net/u013378306/article/details/56281549

  在Keras和Tensorflow中,数据是以张量的形式表示的,张量的形状就是shape。TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通即Flow。


  你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.


(1)input_shape就是指输入张量的shape。例如 input_dim=784,说明输入是一个784维的向量,这相当于一个一阶的张量,它的shape就是(784,)

image.png



2、回调


1、回调是传递给模型的对象,用于在训练期间自定义该模型并扩展其行为。你可以编写自定义回调,也可以使用包含以下方法的内置tf.keras.callbacks:


tf.keras.callbacks.ModelCheckpoint        '定期保存模型的检查点。'

tf.keras.callbacks.LearningRateScheduler  '动态更改学习速率。'

tf.keras.callbacks.EarlyStopping          '在验证效果不再改进时中断训练。'

tf.keras.callbacks.TensorBoard            '使用TensorBoard 监控模型的行为。'

2、要使用tf.keras.callbacks.Callback,请将其传递给模型的fit 方法:


callbacks = [

   # Interrupt training if `val_loss` stops improving for over 2 epochs

   tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),

   # Write TensorBoard logs to `./logs` directory

   tf.keras.callbacks.TensorBoard(log_dir='./logs')

   ]

model.fit(data, labels, batch_size=32, epochs=5, callbacks=callbacks,

         validation_data=(val_data, val_labels))

3、保存和恢复


(1)仅限权重:使用tf.keras.Model.save_weights 保存并加载模型的权重


model = tf.keras.Sequential([layers.Dense(64, activation='relu'),

                            layers.Dense(10, activation='softmax')])

model.compile(optimizer=tf.train.AdamOptimizer(0.001),

             loss='categorical_crossentropy',metrics=['accuracy'])

'默认情况下,会以TensorFlow 检查点文件格式保存模型的权重'

# Save weights to a TensorFlow Checkpoint file

model.save_weights('./weights/my_model')

# Restore the model's state,# this requires a model with the same architecture.

model.load_weights('./weights/my_model')

'权重也可以另存为KerasHDF5 格式(Keras多后端实现的默认格式)'

# Save weights to a HDF5

filemodel.save_weights('my_model.h5', save_format='h5')

# Restore the model's statemodel.

load_weights('my_model.h5')

(2)、仅限配置:可以保存模型的配置,此操作会对模型架构(不含任何权重)进行序列化。即使没有定义原始模型的代码,保存的配置也可以重新创建并初始化相同的模型。Keras 支持JSON 和YAML 序列化格式:


# Serialize a model to JSON format

json_string = model.to_json()

json_string

import json

import pprint

pprint.pprint(json.loads(json_string))

'从json重新创建模型'

fresh_model = tf.keras.models.model_from_json(json_string)

(3)整个模型:整个模型可以保存到一个文件中,其中包含权重值、模型配置乃至优化器配置。这样,您就可以对模型设置检查点并稍后从完全相同的状态继续训练,而无需访问原始代码。


# Create a trivial model

model = tf.keras.Sequential([layers.Dense(10, activation='softmax', input_shape=(32,)),

                            layers.Dense(10, activation='softmax')])

model.compile(optimizer='rmsprop',loss='categorical_crossentropy',

             metrics=['accuracy'])

model.fit(data, labels, batch_size=32, epochs=5)

# Save entire model to a HDF5 file

model.save('my_model.h5')

# Recreate the exact same model, including weights and optimizer.

model = tf.keras.models.load_model('my_model.h5')


4、动态图机制:Eager Execution


     不同于TensorFlow的静态机制。


Eager Execution 是一种命令式编程环境,可立即评估操作。此环境对于Keras 并不是必需的,但是受tf.keras 的支持,并且可用于检查程序和调试。

所有tf.keras 模型构建API 都与Eager Execution 兼容。虽然可以使用Sequential 和函数式API,但Eager Execution 对模型子类化和构建自定义层特别有用。

与通过组合现有层来创建模型的API 不同,函数式API 要求你编写前向传播代码。


Keras的中的模型使用


1、查找使用方法


from keras.models import Sequential

model = Sequential()

help(model.compile)

image.png


(1)、model.compile()函数,用来配置训练模型参数,可以指定你设想的随机梯度下降中的网络的损失函数、优化方式等参数(2)、model.summary()函数,Prints a string summary of the network.

(3)、model.fit_generator()函数,Fits the model on data generated batch-by-batch by a Python generator.The generator is run in parallel to the model, for efficiency.For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU.

(4)、K.placeholder()    #用于得到传递进来的真实的训练样本



2、Keras的 6 种预训练模型


     目前可知,Keras 已经将这 6 种预训练模型集成到了库中: VGG16、VGG19、ResNet50、Inception v3、Xception、MobileNet。VGG 网络以及从 2012 年以来的 AlexNet 都遵循现在的基本卷积网络的原型布局:一系列卷积层、最大池化层和激活层,最后还有一些全连接的分类层。MobileNet 本质上是为移动应用优化后的 Xception 架构的流线型(streamline)版本。



3、Keras深度学习框架的注意事项(自动下载存放路径等)、使用方法之详细攻略


DL之Keras: Keras深度学习框架的注意事项(自动下载存放路径等)、使用方法之详细攻略


相关文章
|
3月前
|
机器学习/深度学习 数据可视化 算法
深度学习模型结构复杂、参数众多,如何更直观地深入理解你的模型?
深度学习模型虽应用广泛,但其“黑箱”特性导致可解释性不足,尤其在金融、医疗等敏感领域,模型决策逻辑的透明性至关重要。本文聚焦深度学习可解释性中的可视化分析,介绍模型结构、特征、参数及输入激活的可视化方法,帮助理解模型行为、提升透明度,并推动其在关键领域的安全应用。
335 0
|
2月前
|
机器学习/深度学习 存储 PyTorch
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
Neural ODE将神经网络与微分方程结合,用连续思维建模数据演化,突破传统离散层的限制,实现自适应深度与高效连续学习。
120 3
Neural ODE原理与PyTorch实现:深度学习模型的自适应深度调节
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
168 0
|
10月前
|
机器学习/深度学习 运维 安全
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
385 22
|
7月前
|
机器学习/深度学习 编解码 人工智能
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
949 64
计算机视觉五大技术——深度学习在图像处理中的应用
|
11月前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
850 6
|
9月前
|
机器学习/深度学习 人工智能 运维
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
323 40
|
7月前
|
机器学习/深度学习 数据采集 存储
深度学习在DOM解析中的应用:自动识别页面关键内容区块
本文探讨了如何通过深度学习模型优化东方财富吧财经新闻爬虫的性能。针对网络请求、DOM解析与模型推理等瓶颈,采用代理复用、批量推理、多线程并发及模型量化等策略,将单页耗时从5秒优化至2秒,提升60%以上。代码示例涵盖代理配置、TFLite模型加载、批量预测及多线程抓取,确保高效稳定运行,为大规模数据采集提供参考。
162 0
|
9月前
|
机器学习/深度学习 运维 资源调度
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
373 6

推荐镜像

更多