Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法(常见函数、方法等)最强详细攻略(二)

简介: Py之cv2:cv2库(OpenCV,opencv-python)的简介、安装、使用方法(常见函数、方法等)最强详细攻略

安装OpenCV的的两种方法


1、几点注意事项:


安装的时候是 opencv_python,但在导入的时候采用 import cv2。

因为OpenCV依赖一些库,可以在本博客中查找一些依赖库的安装方法,例如安装Numpy方法等,本博客应有尽有!

T1、使用whl文件法


先去官网https://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv,下载相应Python版本的OpenCV的whl文件,如本人下载的opencv_python‑3.4.1‑cp36‑cp36m‑win_amd64.whl,然后在whl文件所在目录下,命令 进行安装即可

image.png

pip install opencv_python‑3.4.1‑cp36‑cp36m‑win_amd64.whl



T2、直接命令法  


pip install opencv-python  

image.png


最后,检测安装情况


image.png


哈哈,大功告成!


T3、Anaconda 环境下安装


pip install opencv-python      //Anaconda 环境下安装,先打开Anaconda Prompt,再输入本命令进行安装!


image.png

image.png


20191128更新记录


image.png



OpenCV常见函数、方法


Welcome to OpenCV-Python Tutorials’s documentation!

CV:计算机视觉图像的基础知识—以python的cv2库来了解计算机视觉图像基础


0、基本库函数


cv2.imread(filepath,flags)     #读入一张图像


filepath:要读入图片的完整路径

flags:读入图片的标志

cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道

cv2.IMREAD_GRAYSCALE:读入灰度图片

cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道

cv2.imshow(wname,img)     #显示图像


第一个参数是显示图像的窗口的名字

第二个参数是要显示的图像(imread读入的图像),窗口大小自动调整为图片大小

cv2.imshow('image',img)

cv2.waitKey(0)   #等待键盘输入,单位为毫秒,即等待指定的毫秒数看是否有键盘输入,若在等待时间内按下任意键则返回按键的ASCII码,程序继续运行。

#若没有按下任何键,超时后返回-1。参数为0表示无限等待。不调用waitKey的话,窗口会一闪而逝,看不到显示的图片。

cv2.destroyAllWindow()     #销毁所有窗口

cv2.destroyWindow(wname)   #销毁指定窗口

cv2.imwrite(file,img,num)    #保存一张图像


第一个参数是要保存的文件名

第二个参数是要保存的图像。可选的第三个参数,它针对特定的格式:对于JPEG,其表示的是图像的质量,用0 - 100的整数表示,默认95。

第三个参数表示的是压缩级别。默认为3.

img.copy()    #图像复制



cv2.cvtColor()      #图像颜色空间转换


img2 = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)   #灰度化:彩色图像转为灰度图像

img3 = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)   #彩色化:灰度图像转为彩色图像

# cv2.COLOR_X2Y,其中X,Y = RGB, BGR, GRAY, HSV, YCrCb, XYZ, Lab, Luv, HLS

cv2.resize(image, image2,dsize)     #图像缩放:(输入原始图像,输出新图像,图像的大小)

cv2.flip(img,flipcode)                       #图像翻转,flipcode控制翻转效果。


flipcode = 0:沿x轴翻转;flipcode > 0:沿y轴翻转;flipcode < 0:x,y轴同时翻转

cv2.warpAffine(img, M, (400, 600))       #图像仿射变换 :平移;裁剪、剪切、旋转、仿射变换,

M、M_crop、M_shear、M_rotate


cv2.putText(img,'text',(50,150)   #图像添加文字:(照片,添加的文字,左上角坐标,字体,字体大小,颜色,字体粗细)


cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), 1)

cv2.putText(I,'there 0 error(s):',(50,150),cv2.FONT_HERSHEY_COMPLEX,6,(0,0,255),25)

cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)    #画出矩行:img原图、(x,y)是矩阵的左上点坐标、(x+w,y+h)是矩阵的右下点坐标、(0,255,0)是画线对应的rgb颜色、2是所画的线的宽度。



cv2.boundingRect(img)          #返回图像的四值属性:img是一个二值图,即是它的参数; 返回四个值,分别是x,y,w,h; x,y是矩阵左上点的坐标,w,h是矩阵的宽和高。


1、图像基本运算


    图像的基本运算有很多种,比如两幅图像可以相加、相减、相乘、相除、位运算、平方根、对数、绝对值等;图像也可以放大、缩小、旋转,还可以截取其中的一部分作为ROI(感兴趣区域)进行操作,各个颜色通道还可以分别提取及对各个颜色通道进行各种运算操作。

bitwise_and、bitwise_or、bitwise_xor、bitwise_not四个按位操作函数,是将基础数学运算应用于图像像素的处理中。


bitwise_and、bitwise_or、bitwise_xor、bitwise_not这四个按位操作函数。

void bitwise_and(InputArray src1, InputArray src2,OutputArray dst, InputArray mask=noArray());//dst = src1 & src2

void bitwise_or(InputArray src1, InputArray src2,OutputArray dst, InputArray mask=noArray());//dst = src1 | src2

void bitwise_xor(InputArray src1, InputArray src2,OutputArray dst, InputArray mask=noArray());//dst = src1 ^ src2

void bitwise_not(InputArray src, OutputArray dst,InputArray mask=noArray());//dst = ~src

bitwise_and():是对二进制数据进行“与”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“与”操作,1&1=1,1&0=0,0&1=0,0&0=0

bitwise_or():是对二进制数据进行“或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“或”操作,1|1=1,1|0=0,0|1=0,0|0=0

bitwise_xor():是对二进制数据进行“异或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“异或”操作,1^1=0,1^0=1,0^1=1,0^0=0

bitwise_not():是对二进制数据进行“非”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“非”操作,~1=0,~0=1

2、Image.open 和cv2.imread 的区别及其转换


Image.open 打开来的图像格式,cv2.imread  读出来是像素格式。


# 1、PIL.Image转换成OpenCV格式:

import cv2

from PIL import Image

import numpy

path = 'F:/File_Python/Resources/face_images/LZT01.jpg'

img = Image.open(path).convert("RGB")#.convert("RGB")可不要,默认打开就是RGB

img.show()

#转opencv

#img = cv2.cvtColor(numpy.asarray(image),cv2.COLOR_RGB2BGR)

img = cv2.cvtColor(np.array(img),cv2.COLOR_RGB2BGR)

cv2.imshow("OpenCV",img)

cv2.waitKey()

# 2、OpenCV转换成PIL.Image格式

import cv2

from PIL import Image

import numpy

img = cv2.imread('F:/File_Python/Resources/face_images/LZT01.jpg') # opencv打开的是BRG

cv2.imshow("OpenCV",img)

image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB))

image.show()

cv2.waitKey()


相关应用:CV:利用python的cv2库实现图像数据增强—随机裁剪、随机旋转、随机hsv变换、随机gamma变换代码实现


 


相关文章
|
2月前
|
存储 人工智能 测试技术
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
本文介绍如何使用LangChain结合DeepSeek实现多轮对话,测开人员可借此自动生成测试用例,提升自动化测试效率。
427 125
如何使用LangChain的Python库结合DeepSeek进行多轮次对话?
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
204 0
|
1月前
|
数据可视化 关系型数据库 MySQL
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
本文详解基于Python的电影TOP250数据可视化大屏开发全流程,涵盖爬虫、数据存储、分析及可视化。使用requests+BeautifulSoup爬取数据,pandas存入MySQL,pyecharts实现柱状图、饼图、词云图、散点图等多种图表,并通过Page组件拖拽布局组合成大屏,支持多种主题切换,附完整源码与视频讲解。
210 4
【可视化大屏】全流程讲解用python的pyecharts库实现拖拽可视化大屏的背后原理,简单粗暴!
|
1月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
298 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
3月前
|
运维 Linux 开发者
Linux系统中使用Python的ping3库进行网络连通性测试
以上步骤展示了如何利用 Python 的 `ping3` 库来检测网络连通性,并且提供了基本错误处理方法以确保程序能够优雅地处理各种意外情形。通过简洁明快、易读易懂、实操性强等特点使得该方法非常适合开发者或系统管理员快速集成至自动化工具链之内进行日常运维任务之需求满足。
231 18
|
3月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
347 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
3月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍了基于Python的剪贴板监控技术,结合clipboard-monitor库实现高效、安全的数据追踪。内容涵盖技术选型、核心功能开发、性能优化及实战应用,适用于安全审计、自动化办公等场景,助力提升数据管理效率与安全性。
162 0
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
3523 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
234 4
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制

推荐镜像

更多
下一篇
oss云网关配置