DL之R-CNN:R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: R-CNN是用深度学习解决目标检测问题的开山之作,2014年,第一次用深度学习来做传统的目标检测任务。

 DL之R-CNN:R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

目录

R-CNN算法的简介(论文介绍)

0、R-CNN算法流程图

1、实验结果

R-CNN算法的架构详解

R-CNN算法的案例应用


相关文章

DL之R-CNN:R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DL之R-CNN:R-CNN算法的架构详解

DL之FastR-CNN:Fast R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DL之FasterR-CNN:Faster R-CNN算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

 

R-CNN算法的简介(论文介绍)

image.gif

        R-CNN是用深度学习解决目标检测问题的开山之作,2014年,第一次用深度学习来做传统的目标检测任务

        罗斯·格希克(Ross Girshick)是Facebook人工智能研究(FAIR)的一名研究科学家,致力于计算机视觉和机器学习。2012年,他在Pedro Felzenszwalb的指导下获得了芝加哥大学计算机科学博士学位。在加入FAIR之前,罗斯是微软研究院(Microsoft Research)的研究员、雷德蒙德(Redmond)和加州大学伯克利分校(University of California, Berkeley)的博士后。他的兴趣包括实例级对象理解和视觉推理挑战,这些挑战将自然语言处理和计算机视觉结合起来。他获得了2017年PAMI青年研究员奖,并以开发用于目标检测的R-CNN(基于区域的卷积神经网络)方法而闻名。2017年,罗斯还凭借《面具R-CNN》获得ICCV的Marr奖。

评价:RBG是这个领域神一样的存在,后续的一些改进方法如Fast R-CNN、Faster R-CNN、YOLO等相关工作都和他有关。

Abstract  

      Object detection performance, as measured on the  canonical PASCAL VOC dataset, has plateaued in the last  few years. The best-performing methods are complex ensemble  systems that typically combine multiple low-level  image features with high-level context. In this paper, we  propose a simple and scalable detection algorithm that improves  mean average precision (mAP) by more than 30%  relative to the previous best result on VOC 2012—achieving  a mAP of 53.3%. Our approach combines two key insights:  (1) one can apply high-capacity convolutional neural networks  (CNNs) to bottom-up region proposals in order to  localize and segment objects and (2) when labeled training  data is scarce, supervised pre-training for an auxiliary task,  followed by domain-specific fine-tuning, yields a significant  performance boost. Since we combine region proposals  with CNNs, we call our method R-CNN: Regions with CNN  features. We also compare R-CNN to OverFeat, a recently  proposed sliding-window detector based on a similar CNN  architecture. We find that R-CNN outperforms OverFeat  by a large margin on the 200-class ILSVRC2013 detection  dataset. Source code for the complete system is available at

http://www.cs.berkeley.edu/˜rbg/rcnn.

摘要

      在过去的几年中,通过标准的PASCAL VOC数据集测量,目标检测性能已经趋于稳定。最有效的方法是复杂的集成系统,通常将多个低级图像特征与高级上下文结合起来。在本文中,我们提出了一种简单且可扩展的检测算法,相对于之前VOC 2012的最佳结果,平均精度(MAP)提高了30%以上,实现了53.3%的MAP。我们的方法结合了两个关键的观点:(1)一种方法可以将大容量卷积神经网络(CNN)应用于自下而上的区域方案,以便对对象进行定位和分段;(2)当标记的训练数据不足时,为辅助任务进行有监督的预训练,然后进行特定领域的微调,可以显著提高性能。由于我们将region proposals与CNN结合起来,我们称之为R-CNN方法:具有CNN特征的Regions。我们还将R-CNN与OverFeat 进行了比较,后者是一种基于类似CNN架构的滑动窗口探测器。我们发现,R-CNN在200-class ILSVRC2013检测数据集上的优势,远远超过了OverFeat 。完整系统的源代码可在http://www.cs.berkeley.edu/˜rbg/rcnn上找到。

Conclusion  

      In recent years, object detection performance had stagnated.  The best performing systems were complex ensembles  combining multiple low-level image features with  high-level context from object detectors and scene classifiers.  This paper presents a simple and scalable object detection  algorithm that gives a 30% relative improvement  over the best previous results on PASCAL VOC 2012.  

      We achieved this performance through two insights. The  first is to apply high-capacity convolutional neural networks  to bottom-up region proposals in order to localize  and segment objects. The second is a paradigm for training  large CNNs when labeled training data is scarce. We  show that it is highly effective to pre-train the network—  with supervision—for a auxiliary task with abundant data  (image classification) and then to fine-tune the network for  the target task where data is scarce (detection). We conjecture  that the “supervised pre-training/domain-specific finetuning”  paradigm will be highly effective for a variety of  data-scarce vision problems.  

      We conclude by noting that it is significant that we achieved these results by using a combination of classical tools from computer vision and deep learning (bottomup region proposals and convolutional neural networks). Rather than opposing lines of scientific inquiry, the two are natural and inevitable partners.

结论

      近年来,目标检测性能停滞不前。性能最好的系统是将多个低级图像特征与来自对象检测器和场景分类器的高级上下文相结合的复杂集成。本文提出了一种简单且可扩展的目标检测算法,该算法比之前在PASCAL VOC 2012上获得的最佳结果有30%的相对改进。

      我们通过两个视角来实现这一性能。第一种方法是将大容量卷积神经网络应用于自下而上的区域方案,以实现目标的定位和分段。第二种模式是在标记训练数据稀缺的情况下训练大型CNN。结果表明,对一个数据丰富的辅助任务(图像分类)进行预训练,然后对数据稀缺的目标任务(检测)进行网络微调,是一种非常有效的方法。我们推测,“有监督的预训练/特定区域微调”范式对于各种数据稀缺的视觉问题将非常有效。

      最后,我们注意到,我们通过结合计算机视觉和深度学习(自下而上的区域建议和卷积神经网络)的经典工具,取得了这些成果,这是非常重要的。两者不是对立的科学探究路线,而是自然的、不可避免的合作伙伴。

论文

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik.

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR 2014

https://arxiv.org/abs/1311.2524v3

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik(2014):Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In 580–587.

Rich feature hierarchies for accurate object detection and semantic segmentation Tech report (v3)

0、R-CNN算法流程图

image.gif

image.gifimage.gif

image.gif

1、实验结果

1、Detection average precision (%) on VOC 2010 test

      R-CNN BB算法(加了BBox回归技巧),前边20列是20个分类的每个AP,最后一列是平均,mAP达到53.7!

image.gif

2、ILSVRC2013 detection test mAP

         即在ImageNet上的测试结果,

image.gif

R-CNN算法的架构详解

更新……

DL之R-CNN:R-CNN算法的架构详解

R-CNN算法的案例应用

更新……


相关文章
|
2月前
|
数据采集 机器学习/深度学习 算法
|
2月前
|
数据采集 机器学习/深度学习 算法
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
本文通过K-Means聚类算法对NBA球员数据进行聚类分析,旨在揭示球员间的相似性和差异性,为球队管理、战术决策和球员评估提供数据支持,并通过特征工程和结果可视化深入理解球员表现和潜力。
【优秀设计案例】基于K-Means聚类算法的球员数据聚类分析设计与实现
|
2月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
101 1
|
4月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
2月前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
57 2
|
2月前
|
机器学习/深度学习 算法 数据可视化
决策树算法介绍:原理与案例实现
决策树算法介绍:原理与案例实现
|
2月前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
34 1
|
3月前
|
算法
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
Raid5算法也被称为“异或运算”。异或是一个数学运算符,它应用于逻辑运算。异或的数学符号为“⊕”,计算机符号为“xor”。异或的运算法则为:a⊕b = (¬a ∧ b) ∨ (a ∧¬b)。如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果为0。 异或也叫半加运算,其运算法则相当于不带进位的二进制加法。二进制下用1表示真,0表示假。异或的运算法则为:0⊕0=0,1⊕0=1,0⊕1=1,1⊕1=0(同为0,异为1),这些法则与加法是相同的,只是不带进位。 异或略称为XOR、EOR、EX-OR,程序中有三种演算子:XOR、xor、⊕。使用方法如下z = x ⊕ y z
Raid5数据恢复—Raid5算法简介&raid5磁盘阵列数据恢复案例
|
3月前
|
算法 搜索推荐 编译器
算法高手养成记:Python快速排序的深度优化与实战案例分析
【7月更文挑战第11天】快速排序是编程基础,以O(n log n)时间复杂度和原址排序著称。其核心是“分而治之”,通过选择基准元素分割数组并递归排序两部分。优化包括:选择中位数作基准、尾递归优化、小数组用简单排序。以下是一个考虑优化的Python实现片段,展示了随机基准选择。通过实践和优化,能提升算法技能。**
51 3
|
3月前
|
机器学习/深度学习 数据采集 算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法
【机器学习】CART决策树算法的核心思想及其大数据时代银行贷款参考案例——机器认知外界的重要算法