聊一聊全球加速的原理和配置

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 上次我们讲了一下阿里云全球加速的带宽包选择,这次我们接着聊一下全球加速的基本原理和配置流程。

上次我们讲了一下阿里云全球加速的带宽包选择,这次我们接着聊一下全球加速的基本原理和配置流程。

阿里云全球加速GA的组件及工作原理如下所示:
全球加速.png

  • 加速区域、要优化访问体验的区域,目前覆盖全球的阿里云数据中心大部分可以作为加速区域使用,一个全球加速实例支持多个加速区域,不同的加速区域可以根据需要分配不同的加速带宽。
  • 加速IP、选择了加速地域后,将自动在该地域创建一个加速IP作为服务的访问入口。
  • 监听、将前端加速IP收到的请求转发到后端的应用服务,转发的过程中可以利用阿里云覆盖全球的内部传输网络进行加速,可以创建TCP/UDP或者HTTP/HTTPS的监听。
  • 终端组、一个靠近服务或网站所在地的代理集群,用于发送服务请求并获取服务响应,对于TCP/UDP监听来说一个监听只能对应一个终端组,对于HTTP/HTTPS的监听来说可以对应一个默认终端组以及多个虚拟终端组。
  • 终端节点、一个代理服务器节点,用于发送服务请求及传回结果。
  • 来自加速区域的服务请求将被分别发送到不同的加速区域的加速IP,加速IP具体接受什么样的请求要以监听为准,一个GA全球加速实例可以创建多个监听,而一个监听又对应多个不同的服务端口,这些端口限定了一个GA提供的服务范围,通过监听接受到的服务请求将通过阿里云的内部网络传输到不同的终端组,这些终端组的位置将尽可能靠近网站和服务的源站点,为了充分保证加速的性能和可用性,因此一个终端组将对应4个终端节点,这4个终端节点将负责将收到的加速请求转发给源站,待源站处理完成后结果将顺原路返回到加速IP,加速IP将把结果发送给在加速地域的客户端。
  • 对于TCP/UDP协议的全球加速监听,监听和终端组是一一对应的关系。
  • 对于HTTP/HTTPS协议的全球加速监听,默认情况下所有的加速请求将被发送到默认终端组,另外还可以通过设置基于URL的转发策略将部分请求转发到虚拟端口组。
  • 用户可根据需要将带宽包在不同的加速区域间进行分配,例如为北美的用户分配10Mbps,而为欧洲的用户分配6Mbps。

在掌握了全球加速的运作机制后再进行配置就是一件相当简单的事情了:

  1. 创建加速区域,并分配带宽,例如选择美国硅谷,分配10Mbps带宽,随后阿里云将在美国硅谷创建一个加速IP。
  2. 创建监听、例如TCP,80.
  3. 创建终端组、对应的阿里云将要求选择一个地域用来创建终端组,我们这里选择北京,输入源站的IP或域名。
  4. 配置审核确认,最终确认所有配置后阿里云开始生成终端组对应的终端节点,并为终端节点分配“下车IP”。目前阿里云为每一个终端组配置4个下车IP。

总而言之,GA全球加速的配置与另一个阿里云的服务SLB非常类似,可以视作一个在全球拥有多个IP地址的SLB,其中GA监听的概念和SLB的监听也非常类似,都是用来限定服务端口集合的,而为了实现就近的“下车”访问,GA有额外的终端组的概念,且终端组应尽可能的靠近源站。加速IP和终端组之间的网络是阿里巴巴高速的全球内部网络,因此使用GA进行全球加速可以避免绕行缓慢的国际线路以优化用户体验。

目录
相关文章
|
9月前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
Web App开发 关系型数据库 测试技术
MyEclipse 2014GA 新建 Web Project 并配置 SSH
基本软件配置:     1)MyEclipse 2014GA(JDK:内置 1.7.0.u45;SSH:内置 Struts2.1、Spring3.1 和 Hibernate4.1) 2)apache-tomcat-8.
1064 0
|
5天前
|
算法 数据安全/隐私保护
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
|
1月前
|
算法
基于GA遗传优化的PID控制器最优控制参数整定matlab仿真
通过遗传算法优化PID控制器的参数,可以有效提高控制系统的性能。本文详细介绍了GA优化PID参数的原理、适应度函数的设计以及MATLAB实现步骤,并通过仿真验证了优化效果。希望本文能为读者在实际应用中提供参考和帮助。
64 18
|
25天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
1月前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
3月前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
278 11
|
3月前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
379 15
|
2月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。

热门文章

最新文章