基于GA遗传优化的PID控制器最优控制参数整定matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 通过遗传算法优化PID控制器的Kp、Ki、Kd参数,以输出误差为目标值,迭代求得最优参数。采用MATLAB 2022a验证,利用遗传算法全局寻优特性,自动完成参数整定,适合复杂及非线性系统,有效提升控制性能。

1.程序功能描述
通过遗传优化算法,将PID控制器的kp,ki,kd三个参数作为遗传算法的优化变量,将PID控制器的输出误差作为遗传算法的目标值。通过迭代优化,输出控制器最优状态下对应的控制参数kp,ki,kd,即最后的参数整定结果。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

12b27566d58d3c9aec8d36dfd5b8ebdb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
d31bfe0ce92529e193a326f9031e5255_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序

while gen < MAXGEN;   
      gen
      Pe0 = 0.99;
      pe1 = 0.01; 

FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,Pe0);   
      Selch=mut( Selch,pe1);   
      phen1=bs2rv(Selch,FieldD);   

      for a=1:NIND
          X                = phen1(a,:);
          %计算对应的目标值
          [KK,epls,yout]   = func_obj(X);
          E                = epls;
          JJ(a,1)          = E;

      end 

Objvsel=(JJ);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 

      %保存参数收敛过程和误差收敛过程以及函数值拟合结论
      index1     = isnan(JJ);
      index2     = find(index1 == 1);
JJ(index2) = [];
      index3     = find(JJ==10000000000000);
JJ(index3) = [];
      Error(gen) = mean(JJ);
end 

figure;
plot(Error,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X     = phen1(I,:)

%初始PID,参数随机设置
X0    = [35,0.5,0.5];

[KK,epls,yout0]   = func_obj(X0);


figure;
plot(yout0,'b','linewidth',2);
hold on
plot(yout,'r','linewidth',2);
grid on
legend('PID','GA-PID');
0006

4.本算法原理
PID控制是工业过程中最常用的一种控制策略,其优点在于结构简单、易于实现、鲁棒性强。然而,PID控制器的性能很大程度上取决于其参数的选取。传统的参数整定方法通常基于经验试错或者一些简化的规则,这些方法虽然简单易行,但往往无法获得最优的控制性能。近年来,基于优化算法的PID参数整定方法逐渐受到关注,其中基于遗传算法(GA)的方法由于其全局寻优能力和高效性,被广泛应用。pid控制器的结构如下所示:

702200853ef5fe1fffff9a390a2777c9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

4.1、遗传算法基本原理
遗传算法是一种模拟生物进化过程的优化算法,通过选择、交叉、变异等操作,使种群中的个体逐步逼近问题的最优解。其基本流程包括初始化种群、计算适应度、选择操作、交叉操作、变异操作和终止条件判断。

4.2、基于GA的PID参数优化
在基于GA的PID参数优化中,我们将PID的三个参数Kp,Ki,Kd编码为染色体,即个体。适应度函数通常选取为控制系统性能的评价指标,如ISE(积分平方误差)、IAE(积分绝对误差)等。然后,通过遗传算法的迭代过程,寻找使得适应度函数最小的PID参数。

具体步骤如下:

初始化种群:随机生成一组PID参数,作为初始种群。
计算适应度:对种群中的每个个体(即一组PID参数),以其对应的控制系统性能评价指标作为适应度。
选择操作:根据适应度大小选择优秀的个体,适应度好的个体有更大的机会被选中。
交叉操作:随机选择种群中的两个个体,进行某种方式的交叉,生成新的个体。
变异操作:对新生成的个体进行随机的小幅度变异。
终止条件判断:如果满足终止条件(如达到最大进化代数或适应度达到预设阈值),则停止迭代,否则返回步骤2。
PID控制器的传递函数为:

    G(s) = Kp + Ki/s + Kd*s

   其中,Kp是比例系数,Ki是积分系数,Kd是微分系数。在遗传算法中,我们需要优化的就是这三个系数。

  适应度函数(以ISE为例)可以定义为:

  Fitness = ∫(e(t))^2 dt

其中,e(t)为控制系统的误差信号。

4.3、优势
基于GA的PID参数优化方法具有以下优势:

全局寻优能力:遗传算法能够全局范围内寻找最优解,避免了传统方法可能陷入局部最优的问题。
自动化程度高:只需要设定好遗传算法的参数,就可以自动进行寻优过程,无需人工干预。
适用于复杂和非线性系统:无论系统模型是否复杂,只要可以定义适应度函数,就可以使用该方法进行参数优化。

相关文章
|
6天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
3天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)