阿里视觉AI训练营-day04-作业日-车辆保险应用

本文涉及的产品
对象存储 OSS,标准 - 本地冗余存储 20GB 3个月
对象存储 OSS,恶意文件检测 1000次 1年
对象存储 OSS,内容安全 1000 次 1年
简介: 车辆保险应用

阿里AI训练营【车辆保险应用】


# 前言 转载于:[【阿里云高校计划】车辆保险应用 day4 【拨云见日】](https://blog.csdn.net/weixin_42234067/article/details/106764710)
# 实施前准备工作 ## 一、本地图片上传为OSS #### 1.开通oss ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102173041857.png#pic_center) #### 2.创建Bucket ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102173108804.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center)![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102173122550.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center) ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102173134702.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center) ## 二、开通目标检测服务 [阿里云视觉智能开放平台--目标检测](https://vision.aliyun.com/objectdet?spm=a211p3.14020179.J_7524944390.10.2c984b58Kfamiz) ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102173234550.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center)![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102173431528.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center) ## 三、查看所需API 这里我们用到阿里云视觉智能开放平台提供的三个功能: - 车辆部件识别 - 车辆损伤识别 - 车险图片分类 ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102173511537.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center) 1.车辆部件识别 > 检测图片中车辆部件的位置以及名称。 2.车辆损伤识别 > 针对常见小汽车车型,识别车辆外观受损部件及损伤类型,可识别数十种车辆部件、五大类外观损伤。(刮擦、凹陷、开裂、褶皱、穿孔) 3.车险图片分类 > 对输入的车险图片进行分类。 # 具体实施 ## 一、本地图片上传至OSS的uploadPic类 #### 车辆部件识别 ###### 1.在maven中导入所需依赖 ```java com.aliyun.ossaliyun-sdk-oss3.8.0 ``` ###### 2.编写UploadPic类 ```java package com.example.demo; import com.aliyun.oss.OSS; import com.aliyun.oss.OSSClientBuilder; import java.io.File; import java.net.URL; import java.security.SecureRandom; import java.util.Date; import java.lang.*; import java.util.Scanner; public class UploadPic { public static String UploadPic(){ // Endpoint以杭州为例,其它Region请按实际情况填写。 String endpoint = "oss-cn-shanghai.aliyuncs.com"; // 阿里云主账号AccessKey。 String accessKeyId = "*************"; String accessKeySecret = "*************"; //本地文件名 System.out.println("请输入本地图片path:"); Scanner scanner = new Scanner(System.in); String fileName = scanner.nextLine(); String bucketName = "auto-insurance-pic"; // 获取文件的后缀名 String suffixName = fileName.substring(fileName.lastIndexOf(".")); // 生成上传文件名 String objectName = System.currentTimeMillis() + "" + new SecureRandom().nextInt(0x0400) + suffixName; // 创建OSSClient实例。 OSS ossClient = new OSSClientBuilder().build(endpoint, accessKeyId, accessKeySecret); // 如果需要上传时设置存储类型与访问权限,请参考以下示例代码。 // ObjectMetadata metadata = new ObjectMetadata(); // metadata.setHeader(OSSHeaders.OSS_STORAGE_CLASS, StorageClass.Standard.toString()); // metadata.setObjectAcl(CannedAccessControlList.Private); // putObjectRequest.setMetadata(metadata); // 上传文件。 ossClient.putObject(bucketName, objectName, new File(fileName)); // 设置URL过期时间为1小时。 Date expiration = new Date(System.currentTimeMillis() + 3600 * 1000); // 生成以GET方法访问的签名URL,访客可以直接通过浏览器访问相关内容。 URL url = ossClient.generatePresignedUrl(bucketName, objectName, expiration); // 关闭OSSClient。 ossClient.shutdown(); return url.toString(); } } ``` ###### 3.运行结果 ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102174302405.png#pic_center)![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102174306965.png#pic_center) ## 二、车辆部件识别RecognizeVehicleParts类 #### 1.在maven中导入所需依赖 [阿里maven私有仓库服务](https://maven.aliyun.com/mvn/search) ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102175052583.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center) ```java com.aliyunaliyun-java-sdk-core4.4.8com.alibabafastjson1.2.52com.aliyunaliyun-java-sdk-objectdet1.0.7 ``` #### 2.编写RecognizeVehicleParts类 ```java package com.example.demo; import com.aliyuncs.DefaultAcsClient; import com.aliyuncs.IAcsClient; import com.aliyuncs.exceptions.ClientException; import com.aliyuncs.exceptions.ServerException; import com.aliyuncs.profile.DefaultProfile; import com.example.demo.UploadPic; import com.google.gson.Gson; import java.util.*; import com.aliyuncs.objectdet.model.v20191230.*; public class RecognizeVehicleParts { public static void main(String[] args) { DefaultProfile profile = DefaultProfile.getProfile("cn-shanghai", "accessKeyId", "accessKeySecret"); IAcsClient client = new DefaultAcsClient(profile); RecognizeVehiclePartsRequest request = new RecognizeVehiclePartsRequest(); request.setRegionId("cn-shanghai"); request.setImageURL(UploadPic.UploadPic()); try { RecognizeVehiclePartsResponse response = client.getAcsResponse(request); System.out.println(new Gson().toJson(response)); } catch (ServerException e) { e.printStackTrace(); } catch (ClientException e) { System.out.println("ErrCode:" + e.getErrCode()); System.out.println("ErrMsg:" + e.getErrMsg()); System.out.println("RequestId:" + e.getRequestId()); } } } ``` #### 3.运行结果 ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102175250466.png#pic_center)返回值为: > {"requestId":"BBFB102D-5EAC-483F-9A94-9DA79A06E1F6","data":{"elements":[{"score":0.98788995,"type":"left_tail_light","boxes":[132,274,862,607]},{"score":0.952229,"type":"left_rear_wing","boxes":[4,162,365,750]},{"score":0.74785864,"type":"rear_bumper","boxes":[60,456,987,760]}],"originShapes":[768,1024]}} ## 三.车辆损伤识别 #### 1.在maven中导入所需依赖 见本文二-1 #### 2.编写RecognizeVehicleDamage类 ```java package com.example.demo; import com.aliyuncs.DefaultAcsClient; import com.aliyuncs.IAcsClient; import com.aliyuncs.exceptions.ClientException; import com.aliyuncs.exceptions.ServerException; import com.aliyuncs.profile.DefaultProfile; import com.google.gson.Gson; import java.util.*; import com.aliyuncs.objectdet.model.v20191230.*; public class RecognizeVehicleDamage { public static void main(String[] args) { DefaultProfile profile = DefaultProfile.getProfile("cn-shanghai", "accessKeyId", "accessKeySecret"); IAcsClient client = new DefaultAcsClient(profile); RecognizeVehicleDamageRequest request = new RecognizeVehicleDamageRequest(); request.setRegionId("cn-shanghai"); request.setImageURL(UploadPic.UploadPic()); try { RecognizeVehicleDamageResponse response = client.getAcsResponse(request); System.out.println(new Gson().toJson(response)); } catch (ServerException e) { e.printStackTrace(); } catch (ClientException e) { System.out.println("ErrCode:" + e.getErrCode()); System.out.println("ErrMsg:" + e.getErrMsg()); System.out.println("RequestId:" + e.getRequestId()); } } } ``` #### 3.识别结果 返回值为: > {"requestId":"7FFBD390-7019-4B85-9FFA-779C912A9CEB","data":{"elements":[{"score":0.414995,"type":"1","scores":[0.414995,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],"boxes":[343,390,473,542]},{"score":0.408405,"type":"1","scores":[0.408405,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],"boxes":[541,442,659,545]},{"score":0.348472,"type":"1","scores":[0.348472,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],"boxes":[273,293,423,400]},{"score":0.378637,"type":"2","scores":[0.0,0.378637,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],"boxes":[261,26,496,142]},{"score":0.873101,"type":"5","scores":[0.0,0.0,0.0,0.0,0.873101,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],"boxes":[91,4,555,267]},{"score":0.815785,"type":"6","scores":[0.0,0.0,0.0,0.0,0.0,0.815785,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0],"boxes":[564,270,869,441]},{"score":0.845525,"type":"8","scores":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.845525,0.0,0.0,0.0,0.0,0.0,0.0,0.0],"boxes":[230,234,529,313]},{"score":0.411336,"type":"11","scores":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.411336,0.0,0.0,0.0,0.0],"boxes":[632,425,922,563]},{"score":0.334054,"type":"11","scores":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.334054,0.0,0.0,0.0,0.0],"boxes":[538,91,733,194]},{"score":0.333818,"type":"11","scores":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.333818,0.0,0.0,0.0,0.0],"boxes":[694,157,899,286]},{"score":0.32519,"type":"11","scores":[0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.32519,0.0,0.0,0.0,0.0],"boxes":[523,87,902,278]}]}} ## 四.车险图片分类 #### 1.在maven中导入所需依赖 见本文二-1 #### 2.编写ClassifyVehicleInsurance类 ```java package com.example.demo; import com.aliyuncs.DefaultAcsClient; import com.aliyuncs.IAcsClient; import com.aliyuncs.exceptions.ClientException; import com.aliyuncs.exceptions.ServerException; import com.aliyuncs.profile.DefaultProfile; import com.google.gson.Gson; import java.util.*; import com.aliyuncs.objectdet.model.v20191230.*; public class ClassifyVehicleInsurance { public static void main(String[] args) { DefaultProfile profile = DefaultProfile.getProfile("cn-shanghai", "accessKeyId", "accessKeySecret"); IAcsClient client = new DefaultAcsClient(profile); ClassifyVehicleInsuranceRequest request = new ClassifyVehicleInsuranceRequest(); request.setRegionId("cn-shanghai"); request.setImageURL(UploadPic.UploadPic()); try { ClassifyVehicleInsuranceResponse response = client.getAcsResponse(request); System.out.println(new Gson().toJson(response)); } catch (ServerException e) { e.printStackTrace(); } catch (ClientException e) { System.out.println("ErrCode:" + e.getErrCode()); System.out.println("ErrMsg:" + e.getErrMsg()); System.out.println("RequestId:" + e.getRequestId()); } } } ``` #### 3.识别结果 ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102175903416.png#pic_center)返回值为: > {"requestId":"87BEADED-F581-4C38-9F5F-E6F8DF0A1BA5","data":{"threshold":0.0,"labels":[{"score":0.0046,"name":"others"},{"score":0.0164,"name":"detail"},{"score":0.1934,"name":"component"},{"score":0.0,"name":"vin"},{"score":8.0E-4,"name":"people"},{"score":2.0E-4,"name":"motor"},{"score":0.1439,"name":"semi-car"},{"score":0.0027,"name":"panoramic"},{"score":3.0E-4,"name":"license"},{"score":0.0169,"name":"CT-scan"},{"score":5.0E-4,"name":"truck"},{"score":0.0144,"name":"disassembly"},{"score":0.6059,"name":"scene"}]}} ![在这里插入图片描述](https://ucc.alicdn.com/images/user-upload-01/20201102175927853.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM5NzA2MzY5,size_16,color_FFFFFF,t_70#pic_center) # 总结 转载于:[【阿里云高校计划】车辆保险应用 day4 【拨云见日】](https://blog.csdn.net/weixin_42234067/article/details/106764710)
相关实践学习
通义万相文本绘图与人像美化
本解决方案展示了如何利用自研的通义万相AIGC技术在Web服务中实现先进的图像生成。
目录
相关文章
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
396 29
|
1月前
|
人工智能 算法 安全
AI + 热成像技术在动火作业风险防控中的实现路径
融合AI视觉与热成像技术,构建动火作业安全管控体系。通过定制化易燃物识别、计算机视觉测距、红外温度监测与多源图像融合,实现风险目标精准识别、安全距离实时预警、高温火源智能捕捉,并结合小程序“即拍即查”与后端闭环管理平台,完成隐患从发现到整改的全流程追溯,提升工业现场安全管理智能化水平。
185 10
|
1月前
|
设计模式 人工智能 自然语言处理
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
306 1
|
1月前
|
消息中间件 人工智能 安全
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,涵盖AgentScope-Java、AI MQ、Higress、Nacos及可观测体系,全面开源核心技术,助力企业构建分布式多Agent架构,推动AI原生应用规模化落地。
227 0
构建企业级 AI 应用:为什么我们需要 AI 中间件?
|
1月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
1月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
397 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
1月前
|
人工智能 安全 中间件
构建企业级 AI 应用:为什么我们需要 AI 中间件?
阿里云发布AI中间件,推出AgentScope-Java、AI MQ、Higress网关、Nacos注册中心及可观测体系,全面开源核心技术,构建分布式多Agent架构基座,助力企业级AI应用规模化落地,推动AI原生应用进入新范式。
415 26
|
1月前
|
人工智能 安全 Serverless
再看 AI 网关:助力 AI 应用创新的关键基础设施
AI 网关作为云产品推出已有半年的时间,这半年的时间里,AI 网关从内核到外在都进行了大量的进化,本文将从 AI 网关的诞生、AI 网关的产品能力、AI 网关的开放生态,以及新推出的 Serverless 版,对其进行一个全面的介绍,期望对正在进行 AI 应用落地的朋友,在 AI 基础设施选型方面提供一些参考。
566 45
|
1月前
|
人工智能 安全 数据可视化
Dify让你拖拽式搭建企业级AI应用
Dify是开源大模型应用开发平台,融合BaaS与LLMOps理念,通过可视化工作流、低代码编排和企业级监控,支持多模型接入与RAG知识库,助力企业快速构建安全可控的AI应用,实现从原型到生产的高效落地。
Dify让你拖拽式搭建企业级AI应用
|
1月前
|
传感器 人工智能 数据安全/隐私保护
学生不应依赖AI写作业,怕大脑用进废退。职场人呢?
过度依赖AI将削弱深度思考能力,创新源于主动“跨界整合”。职场人需警惕“思维外包”,善用AI为“杠杆”而非“拐杖”,保持自主思考方能突破边界。法思诺创新学院倡导:创新可训练,大脑越用越强。

热门文章

最新文章

下一篇
oss云网关配置