【行业应用】阿里云实时计算 Flink 版金融行业解决方案

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 基于实时计算 Flink 版的解决方案可帮助金融机构从容应对上述挑战,通过 Flink 构建实时数仓、实时反欺诈系统,助力金融机构快速构建实时风控体系。

行业挑战


近年来,随着互联网金融行业的飞速发展,传统金融机构(如交易所、证券公司、银行等)的各类业务与互联网的结合也越来越紧密,如:各大金融机构纷纷推出手机 APP 客户端,支持用户自主办理移动支付、理财、网络借贷、购买金融产品等各类金融业务。新的业务方式对金融行业也提出了新的要求:

  • 长链路且快速变化的业务:从业务需求出发,需要分析用户的行为轨迹和交易记录,以应对业务的快速变化。
  • 越来越多的实时数据需求:目前需要更多的实时数据来支持业务决策。比如需要依据流量监控、销售情况等,对不同的资源位做出相应调整;同时部分活动也需要实时数据来增强与用户的互动,尤其在金融产品营销活动中需要实时针对用户行为调整策略。
  • 越来越高的数据质量要求:数据的结果会直接影响业务决策和线上运营活动的效果,数据质量也决定了计算结果是否可以作为判断的依据。
  • 越来越多的实时风控需求:传统风控系统需要完成从依赖专家规则到智能风控的实时化转变,如信用违约、账户安全、贷款欺诈等典型场景:

    • 欺诈检测:在办理业务过程中,对用户账号、交易行为等进行实时监控与识别。快速识别异常交易,减少造成用户财产损失的可能。
    • 信用评估:在贷款等银行业务审核过程中,快速识别虚假资料、信息伪冒等恶意欺诈行为,并进行高危人群鉴别,整体信用风险评估等,缩短业务审核流程。

解决方案


基于实时计算 Flink 版的解决方案可帮助金融机构从容应对上述挑战,通过 Flink 构建实时数仓、实时反欺诈系统,助力金融机构快速构建实时风控体系。整个数仓体系架构如下:

1 金融.jpg

实时数仓的数据处理过程涉及到以下几个关键环节:

  1. 数据产生:一般场景下,数据有两个来源:

    1. 用户行为日志:用户在 App 上的操作会产生一系列日志,包括点击、跳转、浏览、停留时长、机型、IP等信息。
    2. 数据库中相关信息:用户下单等业务类行为会被记录到数据库中。
  2. 数据采集:日志和数据库的内容,需要上报到消息队列中,使整条数据链路“流动”起来。比如日志中的数据,可通过日志采集等工具被实时上报到消息队列中。而数据库的数据(Binlog),可通过阿里云数据集成、DTS 产品或者其他开源组件被实时采集到消息队列中。
  3. 数据加工:消息队列(比如 DataHub/Kafka)的原始数据,往往在格式不齐、内容不全,需要经过数据清洗(ETL)之后,才能更好的被下游业务利用。而整个 ETL 过程,是实时数仓架构设计上非常重要的一环。该环节要做到延时小、成本低、可扩展性好、业务指标计算准确。

在系统选型上,需要选择 Flink 对数据进行处理,Flink 具有强大的数据处理能力,低延时、高吞吐,从而保证业务产出。同时阿里云上也推出了实时计算 Flink 版产品,为用户提供一站式高可用的 Flink 服务
在数据架构设计上,也可以依据数仓的基本方法论来构建 ODS/DWD/ADS 层,从而减少数据冗余,降低数据存储成本,并且使数据结构具备更好的可扩展性。

  1. 数据分析:经过 Flink(ETL)处理好的部分数据可以直接被业务方使用,如 App 当日激活/PV/UV 等实时指标。另一部分数据需要经过多维分析才能被业务方使用,这就需要用到 OLAP 系统(如阿里云交互式分析),将数据写入 OLAP 系统后,通过与历史数据的合并查询,即可得到相关数据。
  2. 数据挖掘:从历史中预测未来一直是人类的梦想,对公司来说,能对未来趋势作出正确的判断才能基业长青。机器学习就是通过历史数据对未来进行预测的一种手段,可以使数据发挥最大的价值。
  3. 业务系统:经过处理的数据,可直接服务于相关业务方,如运营、决策者、相关应用等,如运营人员可通过实时报表中的数据及时调整运营策略,提高活动转化率;利用实时风控系统,实时预警风险事件,可避免业务损失等。

基于 Flink 的实时数仓架构:

2 金融.jpg

Flink 主要用于实时数仓 ETL 及 BI 部分的指标计算,与各种上下游打通。

成功案例

众安保险

众安保险基于阿里云实时计算 Flink 版产品构建了实时数仓,其应用场景分为三类: 营销活动、实时大屏及反欺诈。

  • 在营销活动中主要应用于营销活动流量和交易。通过实时计算可以动态观察用户进入活动各个入口的流量情况,以及活动的 PV/UV、交易量等。通过动态观测的用户行为,可制定更精准的营销策略,提高转化。
  • 实时大屏主要应用于实时 KPI 指标监控,如当日保费、当日投保量、当日总体和分平台 PV/UV 等。
  • 反欺诈主要应用于积分奖励等现金类的权益监控;针对某个入口是否为用户真实行为的实时监控判断、经纬度判断等。

随着业务快速变化发展,对实时计算的要求也越来越高,需要平台提供低延时、低资源消耗、高效率、高精准度等能力。在满足业务最基本需求的同时,我们也在充分利用实时计算 Flink 版平台的特性,丰富输入输出接口,保证数据质量。在未来的一段时期里, Flink 的 ML 和 Scala 版本也将会在 SQL 版本之上让实时计算在反欺诈方面和复杂的业务领域绽放精彩。

深交所

深圳证券交易所新一代监察系统围绕异常交易行为监管、违法违规线索筛查等核心业务,全面支持交易监控、调查分析、业务研究的一体化监管工作,遵循“安全高效、持续演进、主流开放、自主可控”的设计原则,打造了安全高效、灵活易用、具备较高包容性的分布式架构技术系统。

实时监控平台是监察系统的核心子系统。从架构设计、核心技术、计算能力、高可用和容灾设计等多方面考察,认为 Flink 能够代表实时计算技术的未来趋势,是实时监控平台技术路线的最佳选择。与 Storm 比较,Flink 提供了强大的状态管理机制,更加友好的编程接口以及 Exactly-Once 语义;与 Spark Streaming 比较,Flink 提供了更加强大的窗口计算能力,并且在性能上更加能够满足低时延的要求。

Flink 帮助应用管理状态,自动保存状态(Checkpoint),并提供多种后端实现。当应用需要维护大量状态时,可使用 RocksDB 状态后端,大大降低内存开销,缓解 GC 问题。在故障时,能够将应用状态恢复到最近一个检查点。

Flink SQL 强大的表达能力大大降低了流计算业务开发的门槛,可满足监察系统的实时统计和实时告警业务 80% 以上的开发需求。扩展 UDF、UDAF、UDTF,实现特定的业务功能性函数,进一步简化了业务研发。

Flink 窗口计算支持业务时间(Event Time),支持全量计算和增量计算等模式,优化的内部算法让性能指标十分出色,方便实现区间值指标计算。

Flink 基于 Chandy-Lamport 分布式快照算法,实现了自动故障处理。在系统出现故障时,作业可以从最近的一个状态快照中恢复并继续运行,且能保证内部数据处理的 Exactly-Once 语义。为监察系统实现高可用的分布式实时计算平台提供牢固的基础。

2019 年深交所与阿里巴巴实时计算团队签订合作协议。新一代监察系统的实时计算平台已安全、可靠地运行了近 300 天。截至 2020 年 4 月底,原始业务消息数量平均达 5千多笔/秒,峰值达到 120多万/秒,关键业务统计、监察报警计算平均耗时百毫秒,为核心监察实时业务提供了强有力的支撑。

[1] https://www.leiphone.com/news/201705/ZVhqW69XRJaKe3cD.html
[2] https://www.infoq.cn/article/wIwa7N6sFBR4QV-ScOgO

实时计算 Flink 版产品交流群

test

阿里云实时计算Flink - 解决方案:
https://developer.aliyun.com/article/765097
阿里云实时计算Flink - 场景案例:
https://ververica.cn/corporate-practice
阿里云实时计算Flink - 产品详情页:
https://www.aliyun.com/product/bigdata/product/sc

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1260 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
158 56
|
1月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
2月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
84 1
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
5月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
874 7
阿里云实时计算Flink在多行业的应用和实践
|
4月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
2月前
|
运维 数据处理 Apache
数据实时计算产品对比测评报告:阿里云实时计算Flink版
数据实时计算产品对比测评报告:阿里云实时计算Flink版
|
3月前
|
存储 运维 监控
阿里云实时计算Flink版的评测
阿里云实时计算Flink版的评测
87 15
|
2月前
|
运维 监控 Serverless
阿里云实时计算Flink版评测报告
阿里云实时计算Flink版是一款全托管的Serverless实时流处理服务,基于Apache Flink构建,提供企业级增值功能。本文从稳定性、性能、开发运维、安全性和成本效益等方面全面评测该产品,展示其在实时数据处理中的卓越表现和高投资回报率。

相关产品

  • 实时计算 Flink版