5个案例详解装饰器 | 手把手教你入门Python之四十六

简介: 本节重点介绍装饰器

上一篇:详解高阶函数和闭包 | 手把手教你入门Python之四十五
下一篇:常见系统模块汇总 | 手把手教你入门Python之四十七

本文来自于千锋教育在阿里云开发者社区学习中心上线课程《Python入门2020最新大课》,主讲人姜伟。

装饰器

装饰器是程序开发中经常会⽤到的⼀个功能,⽤好了装饰器,开发效率如⻁添翼,所以这也是Python⾯试中必问的问题。但对于好多初次接触这个知识的⼈来讲,这个功能有点绕,⾃学时直接绕过去了,然后⾯试问到了就挂了,因为装饰器是程序开发的基础知识,这个都不会,别跟⼈家说你会Python, 看了下⾯的⽂章,保证你学会装饰器。

1、先明⽩这段代码

#### 第⼀波 ####
def foo():
 print('foo')
foo # 表示是函数
foo() # 表示执⾏foo函数
#### 第⼆波 ####
def foo():
 print('foo')
foo = lambda x: x + 1
foo() # 执⾏lambda表达式,⽽不再是原来的foo函数,因为foo这个名字被重新指向了另外⼀个匿名函数

函数名仅仅是个变量,只不过指向了定义的函数⽽已,所以才能通过 函数名()调⽤,如果 函数名=xxx被修改了,那么当在执⾏ 函数名()时,调⽤的就不知之前的那个函数了

2、需求来了

初创公司有N个业务部⻔,基础平台部⻔负责提供底层的功能,如:数据库操作、redis调⽤、监控API等功能。业务部⻔使⽤基础功能时,只需调⽤基础平台提供的功能即可。如下:

############### 基础平台提供的功能如下 ###############
def f1():
 print('f1')
def f2():
 print('f2')
def f3():
 print('f3')
def f4():
 print('f4')
############### 业务部⻔A 调⽤基础平台提供的功能 ###############
f1()
f2()
f3()
f4()
############### 业务部⻔B 调⽤基础平台提供的功能 ###############
f1()
f2()
f3()
f4()

⽬前公司有条不紊的进⾏着,但是,以前基础平台的开发⼈员在写代码时候没有关注验证相关的问题,即:
基础平台的提供的功能可以被任何⼈使⽤。现在需要对基础平台的所有功能进⾏重构,为平台提供的所有功能添加验证机制,即:执⾏功能前,先进⾏验证。

⽼⼤把⼯作交给 Low B,他是这么做的:

跟每个业务部⻔交涉,每个业务部⻔⾃⼰写代码,调⽤基础平台的功能之前先验证。诶,这样⼀来基础
平台就不需要做任何修改了。太棒了,有充⾜的时间泡妹⼦...

当天Low B 被开除了…

⽼⼤把⼯作交给 Low BB,他是这么做的:

############### 基础平台提供的功能如下 ###############
def f1():
 # 验证1
 # 验证2
 # 验证3
 print('f1')
def f2():
 # 验证1
 # 验证2
 # 验证3
 print('f2')
def f3():
 # 验证1
 # 验证2
 # 验证3
 print('f3')
def f4():
 # 验证1
 # 验证2
 # 验证3
 print('f4')
############### 业务部⻔不变 ###############
### 业务部⻔A 调⽤基础平台提供的功能###
f1()
f2()
f3()
f4()
### 业务部⻔B 调⽤基础平台提供的功能 ###
f1()
f2()
f3()
f4()

过了⼀周 Low BB 被开除了…

⽼⼤把⼯作交给 Low BBB,他是这么做的:

只对基础平台的代码进⾏重构,其他业务部⻔⽆需做任何修改

############### 基础平台提供的功能如下 ###############
def check_login():
 # 验证1
 # 验证2
 # 验证3
 pass
def f1():
 check_login()
 print('f1')
def f2():
 check_login()
 print('f2')
def f3():
 check_login()
 print('f3')
def f4():
 check_login()
 print('f4')

⽼⼤看了下Low BBB 的实现,嘴⻆漏出了⼀丝的欣慰的笑,语重⼼⻓的跟Low BBB聊了个天:

老大说:

写代码要遵循 开放封闭 原则,虽然在这个原则是⽤的⾯向对象开发,但是也适⽤于函数式编程,简单来
说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:

  • 封闭:已实现的功能代码块
  • 开放:对扩展开发

如果将开放封闭原则应⽤在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进⾏修改代码,⽼板就给了Low BBB⼀个实现⽅案:

def w1(func):
 def inner():
 # 验证1
 # 验证2
 # 验证3
 func()
 return inner
@w1
def f1():
 print('f1')
@w1
def f2():
 print('f2')
@w1
def f3():
 print('f3')
@w1
def f4():
 print('f4')

对于上述代码,也是仅仅对基础平台的代码进⾏修改,就可以实现在其他⼈调⽤函数 f1 f2 f3 f4 之前都进⾏
【验证】操作,并且其他业务部⻔⽆需做任何操作。
Low BBB⼼惊胆战的问了下,这段代码的内部执⾏原理是什么呢?
⽼⼤正要⽣⽓,突然Low BBB的⼿机掉到地上,恰巧屏保就是Low BBB的⼥友照⽚,⽼⼤⼀看⼀紧⼀抖,喜笑颜开,决定和Low BBB交个好朋友。
详细的开始讲解了:
单独以f1为例:

def w1(func):
 def inner():
 # 验证1
 # 验证2
 # 验证3
 func()
 return inner
@w1
def f1():
 print('f1')

python解释器就会从上到下解释代码,步骤如下:

  1. def w1(func): ==>将w1函数加载到内存
  2. @w1

没错, 从表⾯上看解释器仅仅会解释这两句代码,因为函数在 没有被调⽤之前其内部代码不会被执⾏。
从表⾯上看解释器着实会执⾏这两句,但是 @w1 这⼀句代码⾥却有⼤⽂章, @函数名 是python的⼀种语法糖。

上例@w1内部会执⾏⼀下操作:

执⾏w1函数

执⾏w1函数 ,并将 @w1 下⾯的函数作为w1函数的参数,即:@w1 等价于 w1(f1) 所以,内部就会去
执⾏:

def inner():
 #验证 1
 #验证 2
 #验证 3
 f1() # func是参数,此时 func 等于 f1
 return inner# 返回的 inner,inner代表的是函数,⾮执⾏函数 ,其实就是将原来的 f1 函数塞进另外
⼀个函数中
w1的返回值

将执⾏完的w1函数返回值 赋值 给@w1下⾯的函数的函数名f1 即将w1的返回值再重新赋值给 f1,即:

新f1 = def inner():
 #验证 1
 #验证 2
 #验证 3
 原来f1()
 return inner

所以,以后业务部⻔想要执⾏ f1 函数时,就会执⾏ 新f1 函数,在新f1 函数内部先执⾏验证,再执⾏原
来的f1函数,然后将原来f1 函数的返回值返回给了业务调⽤者。

如此⼀来, 即执⾏了验证的功能,⼜执⾏了原来f1函数的内容,并将原f1函数返回值 返回给业务调⽤者。
Low BBB 你明⽩了吗?要是没明⽩的话,我晚上去你家帮你解决吧!!!

3. 再议装饰器

# 定义函数:完成包裹数据
def makeBold(fn):
 def wrapped():
 return "<b>" + fn() + "</b>"
 return wrapped
# 定义函数:完成包裹数据
def makeItalic(fn):
 def wrapped():
 return "<i>" + fn() + "</i>"
 return wrapped
@makeBold
def test1():
 return "hello world-1"
@makeItalic
def test2():
 return "hello world-2"
@makeBold
@makeItalic
def test3():
 return "hello world-3"
print(test1())
print(test2())
print(test3())

运行结果;

<b>hello world-1</b>
<i>hello world-2</i>
<b><i>hello world-3</i><b>

4. 装饰器(decorator)功能

  1. 引⼊⽇志
  2. 函数执⾏时间统计
  3. 执⾏函数前预备处理
  4. 执⾏函数后清理功能
  5. 权限校验等场景
  6. 缓存

5. 装饰器示例

例1:⽆参数的函数

def check_time(action):
 def do_action():
 action()
 return do_action
@check_time
def go_to_bed():
 print('去睡觉')
go_to_bed()

上⾯代码理解装饰器执⾏为可理解成

result = check_time(go_to_bed) # 把go_to_bed 当做参数传⼊给 check_time函数,再定义⼀个
变量⽤来保存check_time的运⾏结果
result() # check_time 函数的返回值result是⼀个函数, result()再调⽤这个函数,让它再调⽤go_
to_bed函数

例2:被装饰的函数有参数

def check_time(action):
 def do_action(a,b):
 action(a,b)
 return do_action
@check_time
def go_to_bed(a,b):
 print('{}去{}睡觉'.format(a,b))
go_to_bed("zhangsan","床上“)

例3:被装饰的函数有不定⻓参数

def test(cal):
 def do_cal(*args,**kwargs):
 cal(*args,**kwargs)
 return do_cal
@test
def demo(*args):
 sum = 0
 for x in args:
 sum +=x
 print(sum)
demo(1, 2, 3, 4)

例4:装饰器中的return

def test(cal):
 def do_cal(*args,**kwargs):
 return cal(*args,**kwargs) # 需要再这⾥写return语句,表示调⽤函数,获取函数的返回
值并返回
 return do_cal
@test
def demo(a,b):
 return a + b
print(demo(1, 2)) #3

总结:
⼀般情况下为了让装饰器更通⽤,可以有return

例5:装饰器带参数

def can_play(clock):
    print('最外层函数被调用了,clock = {}'.format(clock))
    def handle_action(fn):
        def do_action(name, game):
            if clock < 21:
                fn(name, game)
            else:
                print('太晚了,不能玩儿游戏了')

        return do_action

    return handle_action

@can_play(20)  # 装饰器函数带参数
def play_game(name, game):
    print(name + '正在玩儿' + game)

play_game('张三', '王者荣耀')

1、调用can_play函数,并将12传递给clock
2、再调用handle_action方法,把play_game传递给fn
3、此时再调用play_game其实调用的就是do_action

提⾼:使⽤装饰器实现权限验证

以下代码不要求掌握,如果能看懂最好,如果能⾃⼰⼿动写出来,那就太棒了!

def outer_check(base_permission):
    def check_permission(action):
        def do_action(my_permission):
            if my_permission & base_permission:
                return action(my_permission)
            else:
                return '对不起,您不具有该权限'
            return do_action
        return check_permission
        
        
READ_PERMISSION = 1
WRITE_PERMISSION = 2
EXECUTE_PERMISSION = 4


@outer_check(base_permission=READ_PERMISSION)
def read(my_permission):
    return '读取数据'

@outer_check(base_permission=WRITE_PERMISSION)
def write(my_permission):
    return '写⼊数据'

@outer_check(base_permission=EXECUTE_PERMISSION)
def execute(my_permission):
    return '执⾏程序'

print(read(5))

image.png

image.png

装饰器的高级使用

image.png
image.png

相关文章
|
2天前
|
缓存 算法 数据处理
Python入门:9.递归函数和高阶函数
在 Python 编程中,函数是核心组成部分之一。递归函数和高阶函数是 Python 中两个非常重要的特性。递归函数帮助我们以更直观的方式处理重复性问题,而高阶函数通过函数作为参数或返回值,为代码增添了极大的灵活性和优雅性。无论是实现复杂的算法还是处理数据流,这些工具都在开发者的工具箱中扮演着重要角色。本文将从概念入手,逐步带你掌握递归函数、匿名函数(lambda)以及高阶函数的核心要领和应用技巧。
Python入门:9.递归函数和高阶函数
|
2天前
|
程序员 UED Python
Python入门:3.Python的输入和输出格式化
在 Python 编程中,输入与输出是程序与用户交互的核心部分。而输出格式化更是对程序表达能力的极大增强,可以让结果以清晰、美观且易读的方式呈现给用户。本文将深入探讨 Python 的输入与输出操作,特别是如何使用格式化方法来提升代码质量和可读性。
Python入门:3.Python的输入和输出格式化
|
2天前
|
机器学习/深度学习 人工智能 算法框架/工具
Python入门:1.Python介绍
Python是一种功能强大、易于学习和运行的解释型高级语言。由**Guido van Rossum**于1991年创建,Python以其简洁、易读和十分工程化的设计而带来了庞大的用户群体和丰富的应用场景。这个语言在全球范围内都被认为是**创新和效率的重要工具**。
Python入门:1.Python介绍
|
1月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
106 61
Python装饰器实战:打造高效性能计时工具
|
2天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
2天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
2天前
|
存储 SQL 索引
Python入门:7.Pythond的内置容器
Python 提供了强大的内置容器(container)类型,用于存储和操作数据。容器是 Python 数据结构的核心部分,理解它们对于写出高效、可读的代码至关重要。在这篇博客中,我们将详细介绍 Python 的五种主要内置容器:字符串(str)、列表(list)、元组(tuple)、字典(dict)和集合(set)。
Python入门:7.Pythond的内置容器
|
2天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
1月前
|
设计模式 前端开发 Shell
Python装饰器是什么?
装饰器是Python中用于动态修改函数、方法或类功能的工具,无需改变原代码。通过将函数作为参数传递并返回新函数,装饰器可以在原函数执行前后添加额外逻辑。例如,使用`@logger`装饰器可以打印函数调用日志,而`@timethis`则可用于计算函数执行时间。为了保持被装饰函数的元信息(如`__name__`和`__doc__`),可使用`functools.wraps`装饰器。此外,带参数的装饰器可通过嵌套函数实现,如`@timeitS(2)`,以根据参数条件输出特定信息。
90 59
|
2天前
|
知识图谱 Python
Python入门:4.Python中的运算符
Python是一间强大而且便捷的编程语言,支持多种类型的运算符。在Python中,运算符被分为算术运算符、赋值运算符、复合赋值运算符、比较运算符和逻辑运算符等。本文将从基础到进阶进行分析,并通过一个综合案例展示其实际应用。

热门文章

最新文章