系统梳理主流定时器算法实现的差异以及应用

简介:

这一篇文章系统的梳理主流定时器算法实现的差异以及应用地方。

  1. 定时器介绍

程序里的定时器主要实现的功能是在未来的某个时间点执行相应的逻辑。在定时器模型中,一般有如下几个定义。

interval:间隔时间,即定时器需要在interval时间后执行

StartTimer:添加一个定时器任务

StopTimer:结束一个定时器任务

PerTickBookkeeping: 检查定时器系统中,是否有定时器实例已经到期,相当于定义了最小时间粒度。

常见的实现方法有如下几种:

链表

排序链表

最小堆

时间轮

接下来我们一起看下这些方法的具体实现原理。

  1. 定时器实现方法

2.1 链表实现

链表的实现方法比较粗糙。链表用于存储所有的定时器,每个定时器都含有interval 和 elapse 两个时间参数,elapse表示当前被tickTimer了多少次。当elapse 和interval相等时,表示定时器到期。

在此方案中,添加定时器就是在链表的末尾新增一个节点,时间复杂度是 O(1)。如果想要删除一个定时器的话,我们需要遍历链表找到对应的定时器,时间复杂度是O(n)。此方案下,每隔elapse时间,系统调用信号进行超时检查,即PerTickBookkeeping。每次PerTickBookkeeping需要对链表所有定时器进行 elapse++,因此可以看出PerTickBookkeeping的时间复杂度是O(N)。可以看出此方案过于粗暴,所以使用场景极少

2.2 排序双向链表实现

排序双向链表是在链表实现上的优化。优化思路是降低时间复杂度。

首先,每次PerTickBookkeeping需要自增所有定时器的elapse变量,如果我们将interval变为绝对时间,那么我们只需要比较当前时间和interval时间是否相等,减少了对每个定时器的操作。如果不需要对每个定时器进行操作,我们将定时器进行排序,那么每次PerTickBookkeeping都只需要判断第一个定时器,时间复杂度为O(1)。相应的,为了维持链表顺序,每次新增定时器需要进行链表排序时间复杂度为 O(N)。每次删除定时器时,由于会持有自己节点的引用,所以不需要查找其在链表中所在的位置,所以时间复杂度为O(1),双向链表的好处。
_1_
图1 双向链表实现示意图

2.3 时间轮实现

时间轮示意图如下:

_2_
图2 时间轮

时间轮的数据结构是数组 + 链表。 他的时间轮为数组,新增和删除一个任务,时间复杂度都是O(1)。PerTickBookkeeping每次转动一格,时间复杂度也是O(1)。

2.4 最小堆实现

最小堆是堆的一种, (堆是一种二叉树), 指的是堆中任何一个父节点都小于子节点, 子节点顺序不作要求。

二叉排序树(BST)指的是: 左子树节点小于父节点, 右子树节点大于父节点, 对所有节点适用

_3_
图3 最小堆

树的基本操作是插入节点和删除节点。对最小堆而言,为了将一个元素X插入最小堆,我们可以在树的下一个空闲位置创建一个空穴。如果X可以放在空穴中而不被破坏堆的序,则插入完成。否则就执行上滤操作,即交换空穴和它的父节点上的元素。不断执行上述过程,直到X可以被放入空穴,则插入操作完成。因此我们可以知道最小堆的插入时间复杂度是O(lgN)。最小堆的删除和插入逻辑基本类似,如果不做优化,时间复杂度也是O(lgN),但是实际实现方案上,做了延迟删除操作,时间复杂度为O(1)。

延迟删除即设置定时器的执行回调函数为空,每次最小堆超时,将触发pop_heap,pop会重新调整最小堆,最终删除的定时器将调整到堆顶,但是回调函数不处理。

可以看到PerTickBookkeeping只处理堆顶定时器,时间复杂度O(1)。最小堆可以使用数组来进行表示,数组中,当前下标n的左子节点为2N + 1,当前下标n的右子节点小标为2N + 2。

_4_
图4 最小堆的数组表示

  1. 定时器不同实现对比

3.1 时间复杂度对比

_5_
图5 不同实现时间复杂度

从上面的介绍来看,时间轮的时间复杂度最小、性能最好。

3.2 使用场景来看

在任务量小的场景下:最小堆实现,可以根据堆顶设置超时时间,数组存储结构,节省内存消耗,使用最小堆可以得到比较好的效果。而时间轮定时器,由于需要维护一个线程用来拨动指针,且需要开辟一个bucket数组,消耗内存大,使用时间轮会较为浪费资源。在任务量大的场景下:最小堆的插入复杂度是O(lgN), 相比时间轮O(1) 会造成性能下降。更适合使用时间轮实现。在业界,服务治理的心跳检测等功能需要维护大量的链接心跳,因此时间轮是首选。

更多免费技术资料及视频

相关文章
|
3天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
15 3
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
106 63
|
4天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
4天前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
24 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
1月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
74 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
12天前
|
算法 安全 物联网
如何应用SM2算法进行身份认证
【10月更文挑战第5天】如何应用SM2算法进行身份认证
20 1
|
12天前
|
存储 算法 安全
SM2算法的应用场景有哪些?
【10月更文挑战第5天】SM2算法的应用场景有哪些?
28 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
70 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
16天前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
16天前
|
存储 算法 安全
Python 加密算法详解与应用
Python 加密算法详解与应用
13 1