其他辅助显示层完善折线图 | Python 数据可视化库 Matplotlib 快速入门之十

简介: 本节介绍了利用辅助显示层和图像层完善折线图包括添加网格,描述信息,添加一个新的折线图,以及设置图形风格,添加图例等。

解决中文问题 | Python 数据可视化库 Matplotlib 快速入门之九

其他辅助显示层完善折线图

添加网格显示

为了更加清楚的观察图形对应的值
添加代码:

plt.grid(True, linestyle = "--", alpha = 0.5)

执行结果:

image.png

添加描述信息

添加x轴,y轴描述信息及标题

plt.xlable("时间变化")
plt.ylable("温度变化")
plt.title("某城市11点到12点每分钟的温度变化状况")

执行结果:

image.png

此时想要再添加一个城市的信息,该如何操作呢?
要想给原始的折线图再添加一个信息,需要在图像层做出修改。

完善原始折线图(图像层)

需求:再添加一个城市的温度变化
收集到北京当天温度变化情况,温度在1度到3度。

多次plot

怎么去添加另一个在同一坐标系当中的不同图形, 其实很简单只需要再次plot即可, 但是需要区分线条, 如下:

准备数据,添加代码:

y_beijing = [random.uniform(1, 3) for i in x]

plt.plot(x, y_beijing)

plt.title("上海、北京11点到12点每分钟的温度变化状况")

执行结果:

image.png

如果此时不想是默认的颜色,我们也可以进行改变。

plt.plot(x, y_shanghai, color = "r")
plt.plot(x, y_beijing, color = "b")

执行结果:

image.png

此时改变线条风格:

plt.plot(x, y_shanghai, color = "r", linestyle = "--")

执行结果:

image.png

还有一些其它的风格,我们可以来看一下。

设置图形风格

颜色字符 风格字符
r 红色 - 实线
g 绿色 -- 虚线
b 蓝色 -. 点划线
w 白色 : 点虚线
c 青色 ' ' 留空、空格
m 洋红
y 黄色
k 黑色

我们还需要给图加上图例来完善。

显示图例

修改代码:

plt.plot(x, y_shanghai, color = "r", linestyle = "-.", label = "上海")
plt.plot(x, y_beijing, color = "b", label = "北京")

plt.legend()

执行结果:

image.png

此时我们用的是默认的方式。

  • 注意:如果只在plt.plot()中设置label还不能最终显示出图例, 还需要通过plt.legend()将图例显示出来。

我们也可以调整图例的位置。

plt.legend(loc = "lower left")

执行结果:

image.png

或者

plt.legend(loc = 4)

执行结果:

image.png

图例位置代码:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

完整代码:

import random
# 1、准备数据 x,y
x = range(60)
y_shanghai  = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.plot(x, y_shanghai, color = "r", linestyle = "-.", label = "上海")
plt.plot(x, y_beijing, color = "b", label = "北京")

# 显示图例
plt.legend()

# 修改x,y刻度
# 准备x的刻度说明
x_lable = ["11点{}分".format(i) for i in x] 
plt.xticks(x[::5], x_lable[::5])
plt.yticks(range(0, 40, 5))

# 添加网格显示
plt.grid(True, linestyle = "--", alpha = 0.5)

# 添加描述信息
plt.xlable("时间变化")
plt.ylable("温度变化")
plt.title("上海、北京11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()

配套视频课程,点击这里查看

获取更多资源请订阅Python学习站

相关文章
|
5天前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
39 19
|
8天前
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
27 5
|
12天前
|
数据采集 数据可视化 数据处理
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
33 5
|
16天前
|
数据可视化 数据挖掘 Python
使用Python进行数据可视化:探索与实践
【10月更文挑战第21天】本文旨在通过Python编程,介绍如何利用数据可视化技术来揭示数据背后的信息和趋势。我们将从基础的图表创建开始,逐步深入到高级可视化技巧,包括交互式图表和动态展示。文章将引导读者理解不同图表类型适用的场景,并教授如何使用流行的库如Matplotlib和Seaborn来制作美观且具有洞察力的可视化作品。
41 7
|
15天前
|
数据可视化 定位技术 Python
使用Python进行数据可视化
【10月更文挑战第22天】在这篇文章中,我们将深入探讨如何使用Python进行数据可视化。我们将从基础的图表开始,然后逐步进入更复杂的可视化技术。我们将通过实例代码来展示如何实现这些可视化,以便读者能够更好地理解和应用这些技术。
18 5
|
17天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
【10月更文挑战第20天】本文旨在为编程新手提供一个简洁明了的入门指南,通过Python语言实现数据可视化。我们会介绍如何安装必要的库、理解数据结构,并利用这些知识来创建基本图表。文章将用通俗易懂的语言和示例代码,帮助读者快速掌握数据可视化的基础技能。
27 4
|
17天前
|
数据可视化 数据挖掘 定位技术
Python中利用Bokeh创建动态数据可视化
【10月更文挑战第14天】本文介绍了如何使用 Bokeh 库在 Python 中创建动态数据可视化。Bokeh 是一个强大的开源可视化工具,支持交互式图表和大规模数据集的可视化。文章从安装 Bokeh 开始,逐步讲解了如何创建动态折线图,并添加了交互式控件如按钮、滑块和下拉菜单,以实现数据更新频率的调节和颜色选择。通过这些示例,读者可以掌握 Bokeh 的基本用法,进一步探索其丰富功能,创建更具吸引力和实用性的动态数据可视化。
24 0
|
25天前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
22 0
|
1天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
3天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
17 4
下一篇
无影云桌面