其他辅助显示层完善折线图 | Python 数据可视化库 Matplotlib 快速入门之十

简介: 本节介绍了利用辅助显示层和图像层完善折线图包括添加网格,描述信息,添加一个新的折线图,以及设置图形风格,添加图例等。

解决中文问题 | Python 数据可视化库 Matplotlib 快速入门之九

其他辅助显示层完善折线图

添加网格显示

为了更加清楚的观察图形对应的值
添加代码:

plt.grid(True, linestyle = "--", alpha = 0.5)

执行结果:

image.png

添加描述信息

添加x轴,y轴描述信息及标题

plt.xlable("时间变化")
plt.ylable("温度变化")
plt.title("某城市11点到12点每分钟的温度变化状况")

执行结果:

image.png

此时想要再添加一个城市的信息,该如何操作呢?
要想给原始的折线图再添加一个信息,需要在图像层做出修改。

完善原始折线图(图像层)

需求:再添加一个城市的温度变化
收集到北京当天温度变化情况,温度在1度到3度。

多次plot

怎么去添加另一个在同一坐标系当中的不同图形, 其实很简单只需要再次plot即可, 但是需要区分线条, 如下:

准备数据,添加代码:

y_beijing = [random.uniform(1, 3) for i in x]

plt.plot(x, y_beijing)

plt.title("上海、北京11点到12点每分钟的温度变化状况")

执行结果:

image.png

如果此时不想是默认的颜色,我们也可以进行改变。

plt.plot(x, y_shanghai, color = "r")
plt.plot(x, y_beijing, color = "b")

执行结果:

image.png

此时改变线条风格:

plt.plot(x, y_shanghai, color = "r", linestyle = "--")

执行结果:

image.png

还有一些其它的风格,我们可以来看一下。

设置图形风格

颜色字符 风格字符
r 红色 - 实线
g 绿色 -- 虚线
b 蓝色 -. 点划线
w 白色 : 点虚线
c 青色 ' ' 留空、空格
m 洋红
y 黄色
k 黑色

我们还需要给图加上图例来完善。

显示图例

修改代码:

plt.plot(x, y_shanghai, color = "r", linestyle = "-.", label = "上海")
plt.plot(x, y_beijing, color = "b", label = "北京")

plt.legend()

执行结果:

image.png

此时我们用的是默认的方式。

  • 注意:如果只在plt.plot()中设置label还不能最终显示出图例, 还需要通过plt.legend()将图例显示出来。

我们也可以调整图例的位置。

plt.legend(loc = "lower left")

执行结果:

image.png

或者

plt.legend(loc = 4)

执行结果:

image.png

图例位置代码:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

完整代码:

import random
# 1、准备数据 x,y
x = range(60)
y_shanghai  = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.plot(x, y_shanghai, color = "r", linestyle = "-.", label = "上海")
plt.plot(x, y_beijing, color = "b", label = "北京")

# 显示图例
plt.legend()

# 修改x,y刻度
# 准备x的刻度说明
x_lable = ["11点{}分".format(i) for i in x] 
plt.xticks(x[::5], x_lable[::5])
plt.yticks(range(0, 40, 5))

# 添加网格显示
plt.grid(True, linestyle = "--", alpha = 0.5)

# 添加描述信息
plt.xlable("时间变化")
plt.ylable("温度变化")
plt.title("上海、北京11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()

配套视频课程,点击这里查看

获取更多资源请订阅Python学习站

相关文章
|
1月前
|
人工智能 Python
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
68 7
|
5月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
5月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
100 1
|
2月前
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
63 9
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
114 8
|
3月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
4月前
|
小程序 Linux Python
查找首字母与Python相关的的英文词汇小程序的续篇---进一步功能完善
查找首字母与Python相关的的英文词汇小程序的续篇---进一步功能完善
48 1
|
4月前
|
数据可视化 数据挖掘 API
Python中的数据可视化利器:Matplotlib与Seaborn对比解析
在Python数据科学领域,数据可视化是一个重要环节。它不仅帮助我们理解数据,更能够让我们洞察数据背后的故事。本文将深入探讨两种广泛使用的数据可视化库——Matplotlib与Seaborn,通过对比它们的特点、优劣势以及适用场景,为读者提供一个清晰的选择指南。无论是初学者还是有经验的开发者,都能从中找到有价值的信息,提升自己的数据可视化技能。
255 3
|
4月前
|
数据可视化 定位技术 Python
Python数据可视化--Matplotlib--入门
Python数据可视化--Matplotlib--入门
44 0
|
5月前
|
数据可视化 数据处理 Python
Matplotlib:Python绘图利器之王
Matplotlib:Python绘图利器之王
41 0