其他辅助显示层完善折线图 | Python 数据可视化库 Matplotlib 快速入门之十

简介: 本节介绍了利用辅助显示层和图像层完善折线图包括添加网格,描述信息,添加一个新的折线图,以及设置图形风格,添加图例等。

解决中文问题 | Python 数据可视化库 Matplotlib 快速入门之九

其他辅助显示层完善折线图

添加网格显示

为了更加清楚的观察图形对应的值
添加代码:

plt.grid(True, linestyle = "--", alpha = 0.5)

执行结果:

image.png

添加描述信息

添加x轴,y轴描述信息及标题

plt.xlable("时间变化")
plt.ylable("温度变化")
plt.title("某城市11点到12点每分钟的温度变化状况")

执行结果:

image.png

此时想要再添加一个城市的信息,该如何操作呢?
要想给原始的折线图再添加一个信息,需要在图像层做出修改。

完善原始折线图(图像层)

需求:再添加一个城市的温度变化
收集到北京当天温度变化情况,温度在1度到3度。

多次plot

怎么去添加另一个在同一坐标系当中的不同图形, 其实很简单只需要再次plot即可, 但是需要区分线条, 如下:

准备数据,添加代码:

y_beijing = [random.uniform(1, 3) for i in x]

plt.plot(x, y_beijing)

plt.title("上海、北京11点到12点每分钟的温度变化状况")

执行结果:

image.png

如果此时不想是默认的颜色,我们也可以进行改变。

plt.plot(x, y_shanghai, color = "r")
plt.plot(x, y_beijing, color = "b")

执行结果:

image.png

此时改变线条风格:

plt.plot(x, y_shanghai, color = "r", linestyle = "--")

执行结果:

image.png

还有一些其它的风格,我们可以来看一下。

设置图形风格

颜色字符 风格字符
r 红色 - 实线
g 绿色 -- 虚线
b 蓝色 -. 点划线
w 白色 : 点虚线
c 青色 ' ' 留空、空格
m 洋红
y 黄色
k 黑色

我们还需要给图加上图例来完善。

显示图例

修改代码:

plt.plot(x, y_shanghai, color = "r", linestyle = "-.", label = "上海")
plt.plot(x, y_beijing, color = "b", label = "北京")

plt.legend()

执行结果:

image.png

此时我们用的是默认的方式。

  • 注意:如果只在plt.plot()中设置label还不能最终显示出图例, 还需要通过plt.legend()将图例显示出来。

我们也可以调整图例的位置。

plt.legend(loc = "lower left")

执行结果:

image.png

或者

plt.legend(loc = 4)

执行结果:

image.png

图例位置代码:

Location String Location Code
'best' 0
'upper right' 1
'upper left' 2
'lower left' 3
'lower right' 4
'right' 5
'center left' 6
'center right' 7
'lower center' 8
'upper center' 9
'center' 10

完整代码:

import random
# 1、准备数据 x,y
x = range(60)
y_shanghai  = [random.uniform(15, 18) for i in x]
y_beijing = [random.uniform(1, 3) for i in x]

# 2、创建画布
plt.figure(figsize=(20, 8), dpi=80)

# 3、绘制图像
plt.plot(x, y_shanghai, color = "r", linestyle = "-.", label = "上海")
plt.plot(x, y_beijing, color = "b", label = "北京")

# 显示图例
plt.legend()

# 修改x,y刻度
# 准备x的刻度说明
x_lable = ["11点{}分".format(i) for i in x] 
plt.xticks(x[::5], x_lable[::5])
plt.yticks(range(0, 40, 5))

# 添加网格显示
plt.grid(True, linestyle = "--", alpha = 0.5)

# 添加描述信息
plt.xlable("时间变化")
plt.ylable("温度变化")
plt.title("上海、北京11点到12点每分钟的温度变化状况")

# 4、显示图
plt.show()

配套视频课程,点击这里查看

获取更多资源请订阅Python学习站

相关文章
|
2月前
|
数据可视化 数据挖掘 DataX
Python 数据可视化的完整指南
Python 数据可视化在数据分析和科学研究中至关重要,它能帮助我们理解数据、发现规律并以直观方式呈现复杂信息。Python 提供了丰富的可视化库,如 Matplotlib、Seaborn、Plotly 和 Pandas 的绘图功能,使得图表生成简单高效。本文通过具体代码示例和案例,介绍了折线图、柱状图、饼图、散点图、箱形图、热力图和小提琴图等常用图表类型,并讲解了自定义样式和高级技巧,帮助读者更好地掌握 Python 数据可视化工具的应用。
126 3
|
2月前
|
数据可视化 数据挖掘 开发者
Pandas数据可视化:matplotlib集成(df)
Pandas 是 Python 中强大的数据分析库,Matplotlib 是常用的绘图工具。两者结合可方便地进行数据可视化,帮助理解数据特征和趋势。本文从基础介绍如何在 Pandas 中集成 Matplotlib 绘制图表,如折线图、柱状图等,并深入探讨常见问题及解决方案,包括图表显示不完整、乱码、比例不合适、多子图布局混乱、动态更新图表等问题,提供实用技巧和代码示例。掌握这些方法后,你将能更高效地处理数据可视化任务。
59 9
|
2月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
105 8
|
2月前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
3月前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。
|
3月前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
81 9
|
3月前
|
移动开发 数据可视化 数据挖掘
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
|
3月前
|
数据可视化 数据挖掘 定位技术
Python和Geopandas进行地理数据可视化
【10月更文挑战第22天】本文介绍了如何使用Python和Geopandas进行地理数据可视化和分析,涵盖从准备工作、加载数据、数据探索与处理、地理数据可视化、空间分析与查询到交互式地理数据可视化等内容。通过丰富的代码示例和案例演示,帮助读者掌握地理数据分析的基本方法,为实际应用提供支持。
220 19
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
52 14

推荐镜像

更多