如何快速上手 AB Testing ?淘系技术专家秘方公开

简介: 本文内容大纲:1、什么是 A/B Testing?2、A/B 仅仅是分流吗?3、怎么样才是科学的 A/B 实验。

AB-TESTING.png

作者|乔福
出品|阿里巴巴新零售淘系技术部

本文内容大纲:
1、什么是 A/B Testing?
2、A/B 仅仅是分流吗?
3、怎么样才是科学的 A/B 实验。

什么是 A/B Testing?

关于A/B 有很多层的定义,通俗来说,A/B 是一种工具,通过分隔 A 和 B 两个版本,统计数据,进而看哪个版本的数据效果更好,对产品目标更有帮助。

在这里我更多想从 A/B 本身的意义来说一下它的定义。

以我们的业务迭代为例,我们会定义产品的业务数据指标(这些指标通常是可以直接和间接反映我们的业务目标的),然后我们在业务迭代中不断提出假设,期望通过做这些假设的改变来提升相对应的业务指标。而在这里 A/B 就是用来衡量我们提出的业务改进假设是否有效的一种方法,从统计学意义上说是一类假设验证的方法。

我觉得这样定义的好处是,A/B 不仅仅是一个工具,更多是一种与业务发展融合在一起的迭代思路,并且在 A/B 背后实际有着科学的统计学的依据支撑着,你也会更加关注每一个业务假设是否真的是有效的。

用户增长中最忌讳的是盲目套用其他业务线的增长手段,而忽视了自己业务的分析和推导的过程,凡事是否正确,需要我们测一测才知道。

产品在什么阶段适合 A/B Testing?

对于一个初创项目,产品刚刚孵化,这种时候不太适合做 A/B 测试,因为这个时候我们的目标相对是比较明确的,就是快速形成“原型”产品和大框架,把“产品生下来”,因此也基本上不会有太多抠细节的部分。
而当产品到了一定的阶段,模式已经成型比较稳定,相对处于快速迭代的阶段,就比较适合利用 A/B Testing 来助力业务发展了。

image.png

A/B Testing 的步骤

说 A/B Testing 的步骤之前,我想说,A/B Testing 实验不是说你做了一次实验拿到结果就再也不用做 A/B 了,它更多是一个不断优化和理解产品以及用户的过程。

因此,这里所说的 A/B Testing 的步骤不是指我们如何在平台上面配置一次 A/B 实验,而是更大范围的,如何用 A/B Testing 优化产品的步骤。

总的来说,业界一般会给 A/B Testing 划分为 8 个步骤。

image.png

这是我学习看到的 8 阶段 A/B 划分,可以看到我们技术同学最关注的创建 A/B 实验,实际上只是其中的第 4、5 步,而除此之前,我们还有很多工作要做,那么要科学做 A/B 我们究竟每一步应该做些啥呢?我们来看一下。

1. 建立产品漏斗

这一步往往在我们的工作中会被忽略掉,我觉得,不管是业务还是技术同学,我们都有必要了解自己的产品链路以及用户的漏斗,知道了用户从哪里来,我们希望用户去哪里,才能够有准备的做增长。例如用户拉新的流程,它的漏斗大致可以是:

image.png

2. 确定产品链路核心指标

在明确了产品的漏斗之后,我们需要明确要观察产品链路中的哪些核心指标。

如果你的关注点仅仅是一个页面,那你可能更多需要细看当前页面的用户指标;如果你关注的产品链路比较长,你应该关注整个链路上各个节点之间的指标。

以上面“用户拉新”的例子来说,我们可能要关注每一个节点的用户量(PV/UV),还要看每一层的转化率(例如: 点击/曝光)等等。

确定了指标之后,我们就需要把这些指标纳入长期的观察中。

image.png

3. 观察指标,提出优化假设

接着我们的产品同学就可以根据指标分析当前的业务状况,然后结合需要优化的数据指标,提出相对应的业务假设。这里开始,就有统计学知识入场了。

这里我们说假设实际上包含了两种:

1、原假设,又叫零假设、无假设(Null Hypothesis),代表我们希望通过试验结果推翻的假设。
2、备择假设(Alternative Hypothesis),代表我们希望通过试验结果验证的假设。

可以看得出原假设是悲观主义的。为啥要这么分一下,说实在我自己一开始也很懵逼。我们这里先提出这两个概念(原假设、备择假设),他们的作用在后面几步会看到。

假如说我们的场景是:优化页面上面按钮的点击率,而我们的预计做法是加大按钮的尺寸。

那么原假设的表述就是:加大按钮的尺寸,按钮点击率不会有任何变化。

而备择假设的表述则是:加大按钮的尺寸,按钮点击率会有影响(我觉得影响包含提升和降低,不过大多数的讲解中这个假设只会写提升,我理解我们正常不会假设为数据降低,这点可以探讨一下)。

另外要注意的是,在假设检验中,原假设和备择假设有且只有一个成立。

确定了假设,接下来我们就进入实验的设计了。

image.png

4. 设计A/B 实验方案

实验设计上,我们要明确一些信息:

  • 我们要写明,实验目标是什么,包括上面说的假设。
  • 在实验分组上,我们要考虑如何划分分组,是否要有 A/A 对照,要切多少流量来做实验?
  • 另外在投放上,我们的实验要针对谁做?是否要投放在特定的地区?或是投放在特定的端?

另外,A/B 实验中最好每次只做一个“变量”的改变(虽然受限于时间你也可以同时做多个变量,例如经典的奥巴马参选的 A/B 版本海报),这样对于后续的数据分析和拿明确的结论会比较有好处。

5. 开发 A/B 实验

这一步,是我们最熟悉的阶段,一般的项目需求评审都是从这里开始的,开发同学会借助 Runtime SDK 编写 UI 逻辑、分桶逻辑等,这里先不赘述里面的细节。

6. 运行实验

开发完成后,我们就要准备上线了,这时要设定实验运行时的配置,例如:

我们主要需要设定:

1、指标的样本量(反过来样本量也决定了实验的运行时长)。
2、实验的显著性水平(α)、统计功效(1-β),一般业界普遍设定 α 为 5%,β 为 10%~20%。

为什么要设置显著性水平(α)、统计功效(1-β)?

这是因为,所有的实验,在概率统计学上都是存在误差的,而误差会导致我们做出错误的判断。

这里常见的错误判断包括:

  • 第 I 类错误(弃真错误):原假设为真时拒绝原假设;第 I 类错误的概率记为 α(alpha),对应就是显著性水平值。
  • 第 II 类错误(取伪错误):原假设为假时未拒绝原假设。第 II 类错误的概率记为 β(Beta),取反后(1-β)对应就是统计功效值。

再白话一些,以上面的例子来说:

  • 第一类的错误是指,加大按钮的尺寸,按钮点击率实际没有什么变化,但因为误差,我们认为有变化。
  • 第二类的错误是指,加大按钮的尺寸,按钮点击率实际产生了变化,但因为误差,我们认为没有变化。

这里如果觉得绕,可以多感受几遍。设置好这些,发布完代码后,我们就可以发布实验了。

image.png

7. 实验数据分析

我们前面说过: A/B Testing 的统计学本质就是做假设检验。

当然在开始假设检验前,我们要先验证一下,我们的数据本身是正确的。

然后我们就要根据实验的数据看:

1、实验显著性是否满足要求?
2、实验的结论是否证实了假设对数据的提升?
3、实验是否带来了漏斗中其他数据变差?

关于实验的显著性,这里我们还会用到一个 z-test 计算 p 值的方式来进行校验。

p 值表示,我们观察实验样本有多大的概率是产生于随机过程的,p 值越小,我们越有信心认为原假设是不成立的,如果 p 值小于显著性水平(α),则我们可以认为原假设是不成立的。

8. 实验结论

最后,我们根据这次实验的分析结果,总结实验结论。

例如:这次实验我们具体通过做了 xx 提升了 xx 指标,并且没有对其他的指标产生影响,通过这次实验的结论,我们推理出在 xx 场景下,适合使用 xx 方式来提升 xx 指标。

当然如果没有达到预期的目标,我们就要调整策略提出更进一步的优化假设。

这 8 步,有时候我们也会缩减为一个 5 步的循环:

image.png

总的来说,所做的事情是差不多的。

在电商业务中做 A/B Testing,我们面临什么挑战?

说了这些,我们再来看看目前在电商中做 A/B 测试,我们都面临什么样的挑战?

我个人觉得主要的挑战就是:

A/B 测试直观感觉成本高,业务有接受门槛。

电商业务都讲究跑得快,这点我也和不少同学聊过,其实大家对于接受做 A/B 测试这件事情,感觉不是这么的 buy-in,原因还是直观感觉成本高,开发得开发两(n)个版本,耽误了上线时间。不过讲道理来说,我们不仅仅要追求“跑得快”,还得“方向对”。

相信前面说了这么多,我们可以看到结合 A/B Testing 来做业务,是一个比较科学的过程,有 A/B Testing 我们在业务过程中会更加注重假设求证、数据推导以及验证,同时 A/B 上线相比“一把梭上功能”也可以降低迭代带来的业务风险,甚至结合 A/B 你可以发掘业务中存在的问题,更加了解你的用户的行为,此外通过 A/B 获得的业务的增长经验可以沉淀下来通用化。

另外 A/B 不是一次性的事情,而是一个长期迭代的过程,大家做 A/B 是要以“不断优化”的心态来做,而不是“一次到位”。

从 A/B “平台”的角度来说,要帮助业务解决这些挑战,我们有很多的问题要解:

解决A/B 成本高的问题(这里我们从几个角度来解决):

1.平台的操作效率(是否简单易用),平台工具是否通俗易懂(A/B 那么多统计学的概念的理解成本能否被我们平台侧抹平)。

2.开发更加规范,我们需要从开发 sdk 上规范业务的定制 A/B 开发,提供开发。

3.开发效率提升:

  • 从工程侧,我们可以利用代码脚手架、代码生成等方式来提升效率。
  • 从平台功能上来说,我们可以提供 UI Editor 等之类的工具,把一些“静态配置”类的部分开放给运营和产品,允许他们做改动来做 A/B 实验,减少开发人员自己的投入。

4.A/B 的能力需要融入到其他的流程、平台、系统里面。

未来运营在使用其他平台的时候,不会感觉 A/B 配置是一个割裂的部分,当然这里的方案也是需要我们好好思考的,现在 A/B 的能力要融入到其他平台的成本还是非常高的。

我想这些也是我们接下来一步步需要解决的问题。

We are hiring

淘系技术部依托淘系丰富的业务形态和海量的用户,我们持续以技术驱动产品和商业创新,不断探索和衍生颠覆型互联网新技术,以更加智能、友好、普惠的科技深度重塑产业和用户体验,打造新商业。我们不断吸引用户增长、机器学习、视觉算法、音视频通信、数字媒体、移动技术、端侧智能等领域全球顶尖专业人才加入,让科技引领面向未来的商业创新和进步。
请投递简历至邮箱:ruoqi.zlj@taobao.com
了解更多职位详情:2684亿成交!每秒订单峰值54.4W!这样的团队你想加入吗?

更多技术干货,关注「淘系技术」微信公众号
image.png

相关文章
|
8月前
|
SQL 存储 数据挖掘
从GitHub火到头条!这套万人期待的 SQL 成神之路PDF,终于开源了!
近年来,随着互联网技术的发展,数据分析领域越来越受到人们的重视。能够有效地操作和分析数据,已经成为很多企业和个人成功的重要保证。SQL 是数据操作和查询的重要工具,掌握它不仅可以帮助我们更好地利用数据,也可以为我们打开新的职业之门。
“阿里味”GitHub新春上新NO.1软件架构设计与业务架构融合手册
软件架构设计的本质,是对问题域空间反复运用演绎、抽象、归纳等方法,进而找到适合当前阶段的设计方案的过程。既要考虑软件随业务发展的纵横向扩展性,也要考虑软件自身的可行性、稳定性和可维护性等技术因素。
|
缓存 人工智能 Cloud Native
本周精彩直播预告!CXL 技术及应用研究&一站式构建平台 ABS,明天开讲 | 第 85-86 期
今天下午4点,缓存一致性总线 CXL 技术、龙蜥官方构建平台 ABS 2 大技术分享等你来解锁。
|
编译器 Go Android开发
中国上榜开发者薪酬最低国家;Go 语言产品负责人离职;谷歌 Carbon 旨在代替 C++ | 思否周刊
中国上榜开发者薪酬最低国家;Go 语言产品负责人离职;谷歌 Carbon 旨在代替 C++ | 思否周刊
247 0
|
开发者
重磅发布!《Elastic开发者手册》开放免费下载啦!从理论到实战一册包揽!
《Elastic开发者手册》的创作发布,源于阿里云开发者社区和Elastic中国的友好合作。手册共分为上下两册,上册为基础开发宝典,下册为产品应用实战。书中的内容均来源于Elastic中国官方微信公众号。《Elastic开发者手册》集合了16篇Elastic(中国)深受开发者喜爱的优质内容,内容涵盖Elastic的基础介绍、能力组成、功能实战和开发效能等。
重磅发布!《Elastic开发者手册》开放免费下载啦!从理论到实战一册包揽!
|
敏捷开发 Devops jenkins
技术分享 | 这些常用测试平台,你们公司在用的是哪些呢?
技术分享 | 这些常用测试平台,你们公司在用的是哪些呢?
|
敏捷开发 Devops jenkins
技术分享 | 这些常用测试平台,你们公司在用的是哪些呢?
测试管理平台是贯穿测试整个生命周期的工具集合,它主要解决的是测试过程中团队协作的问题。在整个测试过程中,需要对测试用例、Bug、代码、持续集成等等进行管理。下面分别从这四个方面介绍现在比较流行的管理平台。 ![](https://ceshiren.com/uploads/default/original/3X/5/c/5c4e637fe1f84f97d597e2ab85951a6fe324a
|
Cloud Native 开发者
Air Pods Pro,阿里云定制奥运礼盒等你来——参与征文,说出你和云原生的故事
来开发者社区发文,赢取Air Pods Pro,阿里云定制奥运礼盒等大礼。
47386 0
Air Pods Pro,阿里云定制奥运礼盒等你来——参与征文,说出你和云原生的故事
|
机器学习/深度学习 人工智能 前端开发
IT 技术知识开源图谱等你参与|Code China
当前互联网上 IT 技术资料繁杂,进入某个领域学习某项技术,可能根本就不缺对应的资料,但是对于职业发展这块儿,相信很多初学者或者刚入门的人,对于自己今后的发展路线不甚清晰。CSDN 作为全球最大的中文开发者社区,同时在国内也有最大的开发者用户群体,为了更好的服务开发者,CSDN 联合阿里、字节跳动等企业以及技术专家打造了 IT 技术人才路线图,并在 Code China 上开源,希望吸引更多的专家和企业加入,对已有领域的图谱进行完善,或对未有的领域贡献图谱。图谱根据程序员职业发展规划,分为前端、后端、DevOps、测试、安全、云原生、AI、音视频、区块链等。
321 0
|
中间件
「Code Lab科技创新营」蚂蚁技术人才面试全攻略--线上直播
“技术助力,科技育人”,Code Lab系列是蚂蚁金服针对高校计算机信息技术专业在校生,通过蚂蚁金服科技的技术积累与产品平台,为广大在校同学提供与社会实践相结合的技术内容培训和实践经验分享的开发实践活动。
「Code Lab科技创新营」蚂蚁技术人才面试全攻略--线上直播