速来下载!从RCNN到SSD,这应该是最全的一份目标检测算法盘点

简介: 小叽导读:从简单的图像分类到3D姿势识别,计算机视觉从来不缺乏有趣的问题和挑战。通过肉眼我们可以检测出一张宠物照中的猫和狗,可以识别出梵高作品《星夜》中的星星和月亮,那如何通过算法赋予机器“看”的智能,就是我们接下来要讲的。

1.jpg
本文首先会介绍目标检测的概念,然后介绍一种简化了的目标检测问题——定位 + 分类以及它存在的问题,最后由浅入深逐步进入到目标检测常用的模型及方法,如 Faster R-CNN、SSD 等。这个过程中 会涉及很多细节的概念和知识点,具体的技术讲解请通过文末扫描二维码下载电子进行详细阅读。

2.jpg

1、目标检测常用的模型及方法

1.1 R-CNN

学者们在这个方向做了很多研究,比较有名的是 selective search 方法,具体方法这里不做详细说明,感兴趣的读者可以看关于 selective search 的论文。大家只要知道这是一种从图片中选出潜在物体候选框(Regions of Interest,ROI)的方 法即可。有了获取 ROI 的方法,接下来就可以通过分类和合并的方法来获取最终的 目标检测结果。基于这个思路有了下面的 R-CNN 方法。

  • 选出潜在目标候选框(ROI)
  • 训练一个好的特征提取器
  • 训练最终的分类器
  • 为每个类训练一个回归模型,用来微调 ROI 与真实矩形框位置和大小的偏差

1.2 Fast R-CNN

针对 R-CNN 的 3 个主要问题,我们思考一下是否有更好的解决方案。首先是速度,2000 个 ROI 的 CNN 特征提取占用了大量的时间,是否可以用更好的方法,比如共享卷积层来同时处理所有 2000 个 ROI ? 其次是CNN 的特征不会因 SVM 和回归的调整而更新。

R-CNN 的操作流程比较复杂,能否有更好的方式使得训练过程成为端到端的? 接下来我们将介绍 Firshick 等人于 2015 年提出的 Fast R-CNN[2],它非常巧 妙地解决了 R-CNN 主要的几个问题。

**1.3 Faster R-CNN
**
Faster R-CNN[3] 作为目标检测的经典方法在现今很多实战项目和比赛中频频出现。其实,Faster R-CNN 就是在 Fast R-CNN 的基础上构建一个小的网络,直接产生 region proposal 来代替通过其他方法(如 selective search)得到 ROI。这 个小型的网络被称为区域预测网络(Region Proposal Network,RPN)。Faster R-CNN 的训练流程其中的 RPN 是关键,其余流程基本和 Fast R-CNN一致。

  • 接下来我们看下 Faster R-CNN 的训练过程:
  • 使用 ImageNet 预训练好的模型训练一个 RPN 网络。
  • 使用 ImageNet 预训练好的模型,以及第(1)步里产生的建议区域训练 Fast R-CNN 网络,得到物体实际类别以及微调的矩形框位置。
  • 使用(2)中的网络初始化 RPN,固定前面卷积层,只有调整 RPN 层的参数。
  • 固定前面的卷积层,只训练并调整 Fast R-CNN的 FC 层。

1.4 YOLO

由于在 R-CNN 的系列算法中都需要首先获取大量 proposal,但 proposal 之 间有很大的重叠,会带来很多重复的工作。YOLO[5]一改基于 proposal 的预测思路, 将输入图片划分成 S*S 个小格子,在每个小格子中做预测,最终将结果合并。

接下来我们看一下 YOLO 学习的关键步骤:

  • YOLO 对于网络输入图片的尺寸有要求,首先需要将图片缩放到指定尺寸 (448448),再将图片划分成 SS 的小格。
  • 每个小格里面做这几个预测:该小格是否包含物体、包含物体对应的矩形框位置以及该小格对应 C 个类别的分数是多少。

1.5 SSD

SSD[4] 同时借鉴了YOLO 网格的思想和 Faster R-CNN 的anchor 机制,使 得 SSD 可以快速进行预测的同时又可以相对准确地获取目标的位置。接下来介绍SSD 的一些特点:

  • 使用多尺度特征层进行检测。在 Faster Rcnn的 RPN 中,anchor 是在主干 网络的最后一个特征层上生成的,而在 SSD 中,anchor 不仅仅在最后一个 特征层上产生,在几个高层特征层处同时也在产生 anchor。
  • SSD 中所有特征层产生的 anchor 都将经过正负样本的筛选后直接进行分类分数以及 bbox 位置的学习。

2、目标检测的产业应用实践

前面具体讲解了目标检测的技术应用,技术如何和产业相结合,发挥出最大的价值,也是我们最为关注的。

在经济稳预期的形势下,国内制造业企业正在加快转型升级的步伐。阿里希望通过技术手段来帮助传统企业实现转型升级。

在光伏行业,质检环节长期面临专业度高、招工难、人力不足等问题。工业自动化水平较高的德国曾推出过组件 EL 质检技术,但只针对典型缺陷,仅能做到辅助人工(无法替代人工)。在国内,光伏企业在智能 AI 识别技术领域做了近 10 年的尝试,但多晶电池和组件的自动质检远未达到工业生产水平。

阿里利用 AI 技术,实现了全球第一个可代替人工的多晶电池和组件 EL 质检产品。

3.jpg


电池片本身有很多暗纹,这些暗纹和某些瑕疵在图像特征上比较相似,而且瑕疵本身的大小、长宽比、类间距等也很大,而这些在算法上有着非常大的挑战。

在单晶、多晶电池片质检在线上稳定运行半年后,阿里推出单晶、多晶组件EL质检功能,目前已在产线运行且精度稳定在 95% 以上。组件由 610/612 块电池组成,因此只要有一个地方识别错误,整张组件便识别错误,因此其识别难度远大于电池片。组件 95% 以上的精度意味着单张电池片的识别精度要求远远超过99%。

4.jpg


正泰新能源在应用阿里的 AI 检测之后,在“降本增效”上已经有了非常明显的优势。

阿里云未来将与更多的企业联合,书写智能制造新篇章。

如何下载?


扫描下方二维码,立刻下载。

5.jpg

相关文章
|
2月前
|
监控 安全 算法
137_安全强化:输入过滤与水印 - 实现输出水印的检测算法与LLM安全防护最佳实践
随着大语言模型(LLM)在各行业的广泛应用,安全问题日益凸显。从提示注入攻击到恶意输出生成,从知识产权保护到内容溯源,LLM安全已成为部署和应用过程中不可忽视的关键环节。在2025年的LLM技术生态中,输入过滤和输出水印已成为两大核心安全技术,它们共同构建了LLM服务的安全防护体系。
|
3月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
465 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
2月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
6月前
|
机器学习/深度学习 运维 监控
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
467 1
|
5月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
152 0
|
10月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
285 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
6月前
|
机器学习/深度学习 监控 算法
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
119 0
|
9月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
10月前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
9月前
|
机器学习/深度学习 数据采集 算法
基于yolov2和googlenet网络的疲劳驾驶检测算法matlab仿真
本内容展示了基于深度学习的疲劳驾驶检测算法,包括算法运行效果预览(无水印)、Matlab 2022a 软件版本说明、部分核心程序(完整版含中文注释与操作视频)。理论部分详细阐述了疲劳检测原理,通过对比疲劳与正常状态下的特征差异,结合深度学习模型提取驾驶员面部特征变化。具体流程包括数据收集、预处理、模型训练与评估,使用数学公式描述损失函数和推理过程。课题基于 YOLOv2 和 GoogleNet,先用 YOLOv2 定位驾驶员面部区域,再由 GoogleNet 分析特征判断疲劳状态,提供高准确率与鲁棒性的检测方法。

热门文章

最新文章