基于关系的违规团伙发掘风控方案

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 目前很多平台方都有团伙作案的情况发生,比如团伙性薅羊毛,比如团伙性的制造一些虚假信息,团伙性发送违法广告。之所以是团伙性作案,因为作案人员之间有某种关系连接。当业务方获取了人员关系之后,能否成功挖掘出违规团伙,关系到平台的安全。

业务背景

目前很多平台方都有团伙作案的情况发生,比如团伙性薅羊毛,比如团伙性的制造一些虚假信息,团伙性发送违法广告。之所以是团伙性作案,因为作案人员之间有某种关系连接。当业务方获取了人员关系之后,能否成功挖掘出违规团伙,关系到平台的安全。

业务痛点

绝大部分客户可以通过SNS留言、转账、通话等数据构建出用户关系网络,并且可以甄别出网络中部分违规客户,缺乏有效的智能化的方案对全网所有客户进行是否违规的判断。

解决方案

PAI平台提供了一套基于关系图挖掘的的算法,包含标签传播、最大联通子图等经典图算法

1.人力要求:需要具备基础的图挖掘算法背景、懂得关系型数据的构建模式

2.开发周期:1-2天

3.数据要求:可以将数据构建成点边点的模式,点指的是每个用户,边指的是某种关系(关系可以是通话、转账、留言等等)

数据说明

下图是已知的一份人物通联关系图,每两个人之间的连线表示两人有一定关系,可以是同事或者亲人关系等。已知“Enoch”是信用用户,“Evan”是欺诈用户。需要通过图算法,计算出其它人的信用指数,即得到图中每个人是欺诈用户的概率。这个数据可以方便相关机构做风控。

)

上图对应的数据集如下,上图是个有向图,每个点代表一个人,每个人都是一个start_point,每个start_point都连接一个end_point。count表示start_point和end_point的连线,count值越大说明start_point和end_point这两个人的关系越密切。

特征数据:

参数名称 参数描述
start_point 用户A,每个关系连线的起点
end_point 用户B,每个关系连线的终点
count 用户A和用户B的关系程度

流程说明

进入PAI-Studio产品:https://pai.data.aliyun.com/console

该方案数据和实验环境已经内置于首页模板:

打开实验:

1. 最大联通子图

最大联通子图的功能:图算法的输入数据是关系图谱结构的,最大联通子图可以找到有通联关系的最大集合,在团伙发现的场景中可以排除掉一些与风控场景无关的人。
本次实验通过最大联通子图组件将数据中的群体分为两部分,并赋予group_id。通过SQL脚本组件和JOIN组件去除下图中的无关联人员。

2. 单源最短路径

通过单源最短路径组件探查出每个人的一度人脉、二度人脉等关系。“distance”表示“Enoch”通过几个人可以联络到目标人,如下图所示:

3. 标签传播分类

标签传播分类算法为半监督的分类算法,原理是用已标记节点的标签信息去预测未标记节点的标签信息。在算法执行过程中,每个节点的标签按相似度传播给相邻节点。
使用标签传播分类组件除了需要所有人员的通联图数据以外,还要有人员打标数据。本实验通过已知数据(读数据表)组件导入打标数据(“weight”表示目标是欺诈用户的概率),如下图所示:

4. 结论

通过SQL脚本组件对结果进行筛选,最终展现的是每个人涉嫌欺诈的概率,数值越大表示是欺诈用户的概率越大,如下图所示:

总结

通过PAI-Studio内置的基于关系的违规团伙发掘方案可以基于用户的关系网络自动识别出全网每个用户的风险值,做到违规团伙智能化挖掘的作用,常被应用到金融、社交、电信等行业。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
2023年春运(春节)舆情风险点研判提示分析
随着农历春节临近,根据国务院《2023年综合运输春运疫情防控和运输服务保障总体工作方案》通知,2023年综合运输春运从1月7日开始,至2月15日结束,共40天。
2023年春运(春节)舆情风险点研判提示分析
|
监控 算法 安全
欺诈团伙遇上关联网络,邪不压正
你可能永远都想不到骗子有多狡猾、多专业
270 0
欺诈团伙遇上关联网络,邪不压正
|
人工智能 安全 算法
《白皮书》:身边的人脸安全事件及背后的三类攻击手段
近日,顶象发布《人脸识别安全白皮书》。《白皮书》对人脸安全事件、风险产生的原因进行了详细介绍及重点分析。
246 0
《白皮书》:身边的人脸安全事件及背后的三类攻击手段
|
机器学习/深度学习 安全 算法
顶象业务安全情报如何帮助企业“弄懂”黑灰产?
顶象业务安全情报——企业一眼“看透”黑灰产
152 0
医疗舆情处理办法
每年有关医闹相关的话题总能引发全社会的关注。
|
监控 Java 大数据
【实时+排重】摆脱渠道统计刷量作弊行为
携带参数安装的渠道统计技术,除了能精准统计用户【安装量、激活量、留存率、付费率】等行为数据,还能生成独立报表、实现【免费排重】和【数据实时更新】,排除相同设备的重复下载,及时避免用户重复点击、恶意刷量和作弊作假等行为。
2612 0
|
Web App开发
二月垃圾邮件现状报:欺诈和钓鱼类信息倍增
2010年1月海地大地震后,欺诈和钓鱼消息数量急剧上升,攻击者利用这次灾难事件来为自己谋取利益。与2009年12月相比,2010年1月欺诈和钓鱼类消息在垃圾邮件中所占的比例是原来的2倍。419尼日利亚垃圾邮件(Nigerian Spam)手段江湖重现,欺诈和钓鱼消息数量占垃圾邮件总数的21%,达到该报告发布以来的历史最高记录。
799 0
|
新零售
为杜绝假货,阿里共有12项黑科技!从商品到经营者全方位监督
随着新零售产业和互联网的飞速发展,网购似乎已经变成了我们生活中一项必不可少的“仪式”。那日常网购剁手的大家一定能感受到近几年阿里旗下的各大网购平台的在商业规范,商品质量和用户评价等方面的水平都有很大提升,事实上也确实如此。
1878 0
下一篇
DataWorks