大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《数据加工:用户画像》篇

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本手册为阿里云MVP《云计算·大数据:海量日志数据分析与应用》的《数据加工:用户画像》篇而准备。主要阐述在使用大数据开发套件过程中如何将已经采集至MaxCompute上的日志数据进行加工并进行用户画像,学员可以根据本实验手册,去学习如何创建SQL任务、如何处理原始日志数据。

阿里云MVP Meetup:《云数据·大计算:海量日志数据分析与应用》之《数据加工:用户画像》篇

实验背景介绍

本手册为阿里云MVP Meetup Workshop《云计算·大数据:海量日志数据分析与应用》的《数据加工:用户画像》篇而准备。主要阐述在使用大数据开发套件过程中如何将已经采集至MaxCompute上的日志数据进行加工并进行用户画像,学员可以根据本实验手册,去学习如何创建SQL任务、如何处理原始日志数据。

实验涉及大数据产品

实验环境准备

必备条件:

  • 开通大数据计算服务MaxCompute
  • 创建大数据开发套件项目空间

进入大数据开发套件

确保阿里云账号处于登录状态。

项目列表

  • step2:点击已经创建的项目空间名称,进入大数据开发套件。

点击进入项目

进入大数据开发套件

新建数据表

若在实验《数据采集:日志数据上传》中已经新建脚本文件,可以直接切换至脚本开发tab下,双击打开create_table_ddl脚本文件。若无新建脚本文件可通过如下详细步骤进行创建脚本文件。

1.新建ods_log_info_d表

  • step1:点击数据开发,进入数据开发首页中点击新建脚本

新建脚本

  • step2:配置文件名称为create_table_ddl,类型选择为ODPS SQL,点击提交

配置脚本

  • step3:编写DDL创建表语句。
    编写DDL

DDL建表语句如下:

CREATE TABLE ods_log_info_d (
    ip STRING COMMENT 'ip地址',
    uid STRING COMMENT '用户ID',
    time STRING COMMENT '时间yyyymmddhh:mi:ss',
    status STRING COMMENT '服务器返回状态码',
    bytes STRING COMMENT '返回给客户端的字节数',
    region STRING COMMENT '地域,根据ip得到',
    method STRING COMMENT 'http请求类型',
    url STRING COMMENT 'url',
    protocol STRING COMMENT 'http协议版本号',
    referer STRING COMMENT '来源url',
    device STRING COMMENT '终端类型 ',
    identity STRING COMMENT '访问类型 crawler feed user unknown'
)
PARTITIONED BY (
    dt STRING
);
  • step4:选择需要执行的SQL语句,点击运行,直至日志信息返回成功表示表创建成功。

运行DDL

  • step5:可以使用desc语法来确认创建表是否成功。

DESC

  • step6:点击保存,保存编写的SQL建表语句。

保存DDL

2.新建dw_user_info_all_d表

创建表方法同上,本小节附建表语句:

---创建dw_user_info_all_d表
drop table if exists dw_user_info_all_d;

CREATE TABLE dw_user_info_all_d (
    uid STRING COMMENT '用户ID',
    gender STRING COMMENT '性别',
    age_range STRING COMMENT '年龄段',
    zodiac STRING COMMENT '星座',
    region STRING COMMENT '地域,根据ip得到',
    device STRING COMMENT '终端类型 ',
    identity STRING COMMENT '访问类型 crawler feed user unknown',
    method STRING COMMENT 'http请求类型',
    url STRING COMMENT 'url',
    referer STRING COMMENT '来源url',
    time STRING COMMENT '时间yyyymmddhh:mi:ss'
)
PARTITIONED BY (
    dt STRING
);

3.新建rpt_user_info_d表

创建表方法同上,本小节附建表语句:

---创建rpt_user_info_d表
DROP TABLE IF EXISTS rpt_user_info_d;

CREATE TABLE rpt_user_info_d (
    uid STRING COMMENT '用户ID',
    region STRING COMMENT '地域,根据ip得到',
    device STRING COMMENT '终端类型 ',
    pv BIGINT COMMENT 'pv',
    gender STRING COMMENT '性别',
    age_range STRING COMMENT '年龄段',
    zodiac STRING COMMENT '星座'
)
PARTITIONED BY (
    dt STRING
);

上述三张表创建成功后,保存脚本文件。
保存脚本文件

工作流设计

若成功完成实验《数据采集:日志数据上传》,即可切换至任务开发tab中,双击打开workshop工作流任务。

打开工作流任务

向画布中拖入三个ODPS SQL节点,依次命名为ods_log_info_d、dw_user_info_all_d、rpt_user_info_d,并配置依赖关系如下:

SQL依赖关系

若未完成实验《数据采集:日志数据上传》篇,可通过进入查看如何创建工作流任务。

创建自定义函数

  • step1:点击下载ip2region.jar.
  • step2:切换至资源管理tab页,点击上传按钮。

进入资源管理

  • step3:点击选择文件,选择已经下载到本地的ip2region.jar。

资源上传

  • step4:点击提交
  • step5:切换至函数管理tab,点击创建函数按钮。

进入函数管理

  • step6:资源选择ip2region.jar,其他配置项如下所示。

新建函数

配置项说明如下:

  • 函数名:getregion
  • 类名:org.alidata.odps.udf.Ip2Region
  • 资源:ip2region.jar
  • step7:点击提交

配置ODPS SQL节点

1)配置ods_log_info_d节点:

  • step1:双击ods_log_info_d节点,进入节点配置界面,编写处理逻辑。

ODS

附SQL逻辑如下:

INSERT OVERWRITE TABLE ods_log_info_d PARTITION (dt=${bdp.system.bizdate})
SELECT ip
    , uid
    , time
    , status
    , bytes -- 使用自定义UDF通过ip得到地域
    , getregion(ip) AS region -- 通过正则把request差分为三个字段
    , regexp_substr(request, '(^[^ ]+ )') AS method
    , regexp_extract(request, '^[^ ]+ (.*) [^ ]+$') AS url
    , regexp_substr(request, '([^ ]+$)') AS protocol -- 通过正则清晰refer,得到更精准的url
    , regexp_extract(referer, '^[^/]+://([^/]+){1}') AS referer -- 通过agent得到终端信息和访问形式
    , CASE 
        WHEN TOLOWER(agent) RLIKE 'android' THEN 'android'
        WHEN TOLOWER(agent) RLIKE 'iphone' THEN 'iphone'
        WHEN TOLOWER(agent) RLIKE 'ipad' THEN 'ipad'
        WHEN TOLOWER(agent) RLIKE 'macintosh' THEN 'macintosh'
        WHEN TOLOWER(agent) RLIKE 'windows phone' THEN 'windows_phone'
        WHEN TOLOWER(agent) RLIKE 'windows' THEN 'windows_pc'
        ELSE 'unknown'
    END AS device
    , CASE 
        WHEN TOLOWER(agent) RLIKE '(bot|spider|crawler|slurp)' THEN 'crawler'
        WHEN TOLOWER(agent) RLIKE 'feed'
        OR regexp_extract(request, '^[^ ]+ (.*) [^ ]+$') RLIKE 'feed' THEN 'feed'
        WHEN TOLOWER(agent) NOT RLIKE '(bot|spider|crawler|feed|slurp)'
        AND agent RLIKE '^[Mozilla|Opera]'
        AND regexp_extract(request, '^[^ ]+ (.*) [^ ]+$') NOT RLIKE 'feed' THEN 'user'
        ELSE 'unknown'
    END AS identity
FROM (
    SELECT SPLIT(col, '##@@')[0] AS ip
        , SPLIT(col, '##@@')[1] AS uid
        , SPLIT(col, '##@@')[2] AS time
        , SPLIT(col, '##@@')[3] AS request
        , SPLIT(col, '##@@')[4] AS status
        , SPLIT(col, '##@@')[5] AS bytes
        , SPLIT(col, '##@@')[6] AS referer
        , SPLIT(col, '##@@')[7] AS agent
    FROM ods_raw_log_d
    WHERE dt = ${bdp.system.bizdate}
) a;
  • step2:点击保存

保存ODS

  • step3:点击返回,返回至工作流开发面板。

返回工作流任务

2)配置dw_user_info_all_d节点:

  • step1:双击dw_user_info_all_d节点,进入节点配置界面,编写处理逻辑。

DW

附SQL语句如下:

INSERT OVERWRITE TABLE dw_user_info_all_d PARTITION (dt='${bdp.system.bizdate}')
SELECT COALESCE(a.uid, b.uid) AS uid
    , b.gender
    , b.age_range
    , b.zodiac
    , a.region
    , a.device
    , a.identity
    , a.method
    , a.url
    , a.referer
    , a.time
FROM (
    SELECT *
    FROM ods_log_info_d
    WHERE dt = ${bdp.system.bizdate}
) a
LEFT OUTER JOIN (
    SELECT *
    FROM ods_user_info_d
    WHERE dt = ${bdp.system.bizdate}
) b
ON a.uid = b.uid;
  • step2:点击保存
  • step3:点击返回,返回至工作流开发面板。

配置rpt_user_info_d节点

  • step1:双击进入rpt_user_info_d节点进入配置界面。

rpt

附SQL代码如下:

INSERT OVERWRITE TABLE rpt_user_info_d PARTITION (dt='${bdp.system.bizdate}')
SELECT uid
    , MAX(region)
    , MAX(device)
    , COUNT(0) AS pv
    , MAX(gender)
    , MAX(age_range)
    , MAX(zodiac)
FROM dw_user_info_all_d
WHERE dt = ${bdp.system.bizdate}
GROUP BY uid;
  • step2:点击保存
  • step3:点击返回,返回至工作流开发面板。

提交工作流任务

  • step1:点击提交,提交已配置的工作流任务。

提交工作流

  • step2:在变更节点列表弹出框中点击确定提交

变更节点列表

提交成功后工作流任务处于只读状态,如下:

只读状态

通过补数据功能测试新建的SQL任务

鉴于在数据采集阶段已经测试了数据同步任务,本节中直接测试下游SQL任务即可,也保证了时效性。

  • step1:进入运维中心 > 任务列表,找到workshop工作流任务。

工作流任务

  • step2:单击名称展开工作流。

![进入节点试图]image

  • step3:选中ods_log_info_d节点,单击补数据

![选择补数据节点]image

  • step4:在补数据节点对话框中全选节点名称,选择业务日期,点击运行选中节点

补数据节点列表

自动跳转到补数据任务实例页面。

  • step5:输入字母‘d’,通过过滤条件刷新,直至SQL任务都运行成功即可。

展开子节点

确认数据是否成功写入MaxCompute相关表

  • step1:返回到create_table_ddl脚本文件中。
  • step2:编写并执行sql语句查看rpt_user_info_d数据情况。。

数据预览

附录:SQL语句如下。

---查看rpt_user_info_d数据情况
select * from rpt_user_info_d limit 10;
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
5月前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
348 92
|
3月前
|
存储 监控 算法
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
61 3
|
6月前
|
运维 监控 Cloud Native
一行代码都不改,Golang 应用链路指标日志全知道
本文将通过阿里云开源的 Golang Agent,帮助用户实现“一行代码都不改”就能获取到应用产生的各种观测数据,同时提升运维团队和研发团队的幸福感。
398 96
|
4月前
|
运维 应用服务中间件 nginx
docker运维查看指定应用log文件位置和名称
通过本文的方法,您可以更高效地管理和查看Docker容器中的日志文件,确保应用运行状态可控和可监测。
344 28
|
4月前
|
存储 人工智能 分布式计算
阿里云云数据仓库:助力企业构建智能数据基石的云端利器 。阿里云云数据仓库优势与选型指南
阿里云数据仓库体系基于MaxCompute、AnalyticDB等核心产品,提供弹性敏捷的PB级数据处理能力,支持实时分析与智能决策。其六大优势包括无限弹性伸缩、极致性能表现、智能成本优化、全栈安全体系、生态无缝对接和AI增强分析,助力企业在数字经济时代应对数据爆发式增长的挑战。灵活透明的定价体系和行业实践案例展示了其在证券、新零售、物联网等领域的成功应用,为企业构建智能数据基座提供了清晰路径。
141 6
|
4月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
3月前
|
SQL 数据库
【YashanDB知识库】应用绑定参数的慢查询,慢日志抓取不到
【YashanDB知识库】应用绑定参数的慢查询,慢日志抓取不到
|
5月前
|
存储 人工智能 JSON
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
RAG Logger 是一款专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、检索结果记录、LLM 交互记录和性能监控等功能。
219 7
RAG Logger:专为检索增强生成(RAG)应用设计的开源日志工具,支持查询跟踪、性能监控
|
4月前
|
SQL 分布式计算 Serverless
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用

相关产品

  • 云原生大数据计算服务 MaxCompute