数据架构问题之流批一体在数据分析型应用中的价值是什么

简介: 数据架构问题之流批一体在数据分析型应用中的价值是什么

问题一:如何使用流批一体是否要根据应用类型而定?



参考答案:

是的,具体如何使用流批一体要根据应用类型而定。这既决定了流批一体与数据架构的关系,也体现了流批一体在不同场景下的价值。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616738



问题二:在流批一体的应用中,核心问题是什么?



参考答案:

在于如何实现输入统一,因为流任务和批任务对输入的要求是不一样的。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616739



问题三:在数据分析型应用中,如何保证批任务和流任务的输入统一?



参考答案:

为了保证输入统一,我们可以让流任务直接读取消息队列中的数据,同时周期性地将消息队列中的数据落盘,然后每日单独处理当天的增量数据,这样批任务也能周期性处理增量数据,从而实现输入统一。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616740



问题四:在数据分析型应用中,批任务和流任务处理T-1的数据时,期望的结果是什么?



参考答案:

在理想情况下,当批任务处理完T-1的数据并输出结果时,这个结果应该与流任务先前输出的T-1的结果相同。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616741



问题五:流批一体在数据分析型应用中的价值是什么?



参考答案:

流批一体在数据分析型应用中是Lambda架构的一种高级实现,它解决了原Lambda架构中需要开发两套代码、维护两套系统以及计算逻辑口径不一致的问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/616742

相关文章
|
3月前
|
数据采集 人工智能 安全
开源赋能双碳:MyEMS 能源管理系统的架构与实践价值
在全球碳中和趋势与“双碳”目标推动下,能源管理趋向精细化与智能化。MyEMS是一款基于Python开发的开源能源管理系统,具备灵活适配、功能全面的优势,覆盖工厂、建筑、数据中心等多元场景。系统支持能源数据采集、分析、可视化及设备管理、故障诊断、AI优化控制等功能,提供“监测-分析-优化”闭环解决方案。遵循“国家+省级+接入端”三级架构,MyEMS在重点用能单位能耗监测中发挥关键作用,助力实现能源效率提升与政策合规。开源模式降低了技术门槛,推动“双碳”目标落地。
129 0
|
3月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
2月前
|
数据采集 缓存 前端开发
如何开发门店业绩上报管理系统中的商品数据板块?(附架构图+流程图+代码参考)
本文深入讲解门店业绩上报系统中商品数据板块的设计与实现,涵盖商品类别、信息、档案等内容,详细阐述技术架构、业务流程、数据库设计及开发技巧,并提供完整代码示例,助力企业构建稳定、可扩展的商品数据系统。
|
15天前
|
数据采集 机器学习/深度学习 搜索推荐
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
MIT与丰田研究院研究发现,扩散模型的“局部性”并非源于网络架构的精巧设计,而是自然图像统计规律的产物。通过线性模型仅学习像素相关性,即可复现U-Net般的局部敏感模式,揭示数据本身蕴含生成“魔法”。
87 3
MIT新论文:数据即上限,扩散模型的关键能力来自图像统计规律,而非复杂架构
|
12天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
25天前
|
JSON 供应链 监控
1688商品详情API技术深度解析:从接口架构到数据融合实战
1688商品详情API(item_get接口)可通过商品ID获取标题、价格、库存、SKU等核心数据,适用于价格监控、供应链管理等场景。支持JSON格式返回,需企业认证。Python示例展示如何调用接口获取商品信息。
|
18天前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
235 0
|
2月前
|
SQL 数据挖掘 BI
数据分析的尽头,是跳出数据看数据!
当前许多企业在数据分析上投入大量资源,却常陷入“数据越看越细,业务越看越虚”的困境。报表繁杂、指标众多,但决策难、行动少,分析流于形式。真正有价值的数据分析,不在于图表多漂亮,而在于能否带来洞察、推动决策、指导行动。本文探讨如何跳出数据、回归业务场景,实现数据驱动的有效落地。
|
2月前
|
数据采集 监控 数据可视化
数据量暴涨时,抓取架构该如何应对?——豆瓣电影案例调研
本案例讲述了在豆瓣电影数据采集过程中,面对数据量激增和限制机制带来的挑战,如何通过引入爬虫代理、分布式架构与异步IO等技术手段,实现采集系统的优化与扩展,最终支撑起百万级请求的稳定抓取。
数据量暴涨时,抓取架构该如何应对?——豆瓣电影案例调研
|
2月前
|
缓存 前端开发 BI
如何开发门店业绩上报管理系统中的门店数据板块?(附架构图+流程图+代码参考)
门店业绩上报管理是将门店营业、动销、人效等数据按标准化流程上报至企业中台或BI系统,用于考核、分析和决策。其核心在于构建“数据底座”,涵盖门店信息管理、数据采集、校验、汇总与对接。实现时需解决数据脏、上报慢、分析无据等问题。本文详解了实现路径,包括系统架构、数据模型、业务流程、开发要点、三大代码块(数据库、后端、前端)及FAQ,助你构建高效门店数据管理体系。