数据中台核心方法论--OneModel为何需要产品化支撑?

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 作者:渊洛 转自:阿里巴巴数据中台官网 https://dp.alibaba.com 什么是产品化大部分创业公司都是从一个伟大的想法创意开始的,并且需要有一堆技术专家来实现。我们清楚,伟大的技术并不等同于和伟大的产品,技术可以解决问题,但如果它没有办法法规模化,那这些技术或者能力对用户便没有直接价值,只有把它们拆解,打包,设计成产品,才能真正的解决用户问题,把某些技术或者能力变成产品的过程这个过程,就是产品化。

作者:渊洛 转自:阿里巴巴数据中台官网 https://dp.alibaba.com

什么是产品化
大部分创业公司都是从一个伟大的想法创意开始的,并且需要有一堆技术专家来实现。我们清楚,伟大的技术并不等同于和伟大的产品,技术可以解决问题,但如果它没有办法法规模化,那这些技术或者能力对用户便没有直接价值,只有把它们拆解,打包,设计成产品,才能真正的解决用户问题,把某些技术或者能力变成产品的过程这个过程,就是产品化。

OneModel方法论
OneModel方法论是以维度建模为理论基础,构建总线矩阵,划分和定义业务板块、数据域、业务过程、维度、度量/原子指标、业务限定、时间周期、派生指标,设计出维度表、明细事实表、汇总事实表的过程。
image

OneModel的产品化
如前所述,OneModel方法论可以帮准企业建设标准的、稳定的数据中台,但再好的方法论如果不能规模化、产品化,对于客户而言,开发、管理都是更多的开发投入,以及对更多的数据技术专家的依赖。为帮助更多的 企业建设高效、标准的数据中台,阿里巴巴数据中台团队思考如何对OneModel方法论进行产品化。
经过了长时间的产品设计、打磨,最终OneModel的产品化是体现在dataphin中规范建模的模块,通过规范定义,定义维度、业务过程、业务限定、原子指标、派生指标,通过定义、配置以后,自动生成维度逻辑表、事实逻辑表、汇总逻辑表。
image

OneModel产品化带来的好处

严格落实规范定义
传统开发中,依据文档或者管理约束来规范开发,但由于人员流动、人员能力等客观情况,仍然会有不符合规范的情况发生,借助工具的能力,消除指标的二义性,约束数据研发人员,在开发的过程中能够严格落实设计。

设计即开发,降本增效
OneModel产品化以后,通过配置实现自动化开发,降低数据研发的门槛,能极大解放技术同学,使其快速能完成业务需求,甚至业务人员不需要等待开发人员排期,可以自己来进行数据开发;另外,运维人员快速简单的管理数据、定位问题,降低数据管理运维成本。降低开发运维成本,提高产出效率。
平台化以后,企业可以有更多精力投入稳定性、高性能、技术发展、业务探究等其他重要事项中,企业可以更多的将注意力放到业务数据价值的挖掘上,提高人效,降低了公司的成本。

主题式服务,简化查询分析
在dataphin中,可以配置事实表的关联维度,维度的关联维度,形成类雪花模型的主题式的逻辑表模型,在查询时,查询的是主题式的逻辑表,不需要再写表关联查询。如下所示:
image

阿里巴巴数据中台团队,致力于输出阿里云数据智能的最佳实践,助力每个企业建设自己的数据中台,进而共同实现新时代下的智能商业!
阿里巴巴数据中台解决方案,核心产品:
Dataphin,以阿里巴巴大数据核心方法论OneData为内核驱动,提供一站式数据构建与管理能力;
Quick BI,集阿里巴巴数据分析经验沉淀,提供一站式数据分析与展现能力;
Quick Audience,集阿里巴巴消费者洞察及营销经验,提供一站式人群圈选、洞察及营销投放能力,连接阿里巴巴商业,实现用户增长。
欢迎志同道合者一起成长!更多内容详见 https://dp.alibaba.com

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
7月前
|
SQL 存储 数据采集
数据中台建设方法论
数据中台建设方法论
|
存储 分布式计算 供应链
数据中台实战(03)-构建数据中台的三要素:方法论、组织和技术
数据中台实战(03)-构建数据中台的三要素:方法论、组织和技术
535 0
数据中台实战(03)-构建数据中台的三要素:方法论、组织和技术
|
存储 数据采集 分布式计算
什么是OneData?阿里数据中台实施方法论解读
什么是OneData?阿里数据中台实施方法论解读
11310 2
什么是OneData?阿里数据中台实施方法论解读
|
数据采集 监控 供应链
数据中台不是“银弹”:云原生数据中台:架构、方法论与实践
数据中台不是“银弹”:云原生数据中台:架构、方法论与实践
549 0
数据中台不是“银弹”:云原生数据中台:架构、方法论与实践
|
机器学习/深度学习 人工智能 数据挖掘
个推CTO谈数据中台(上):从要求、方法论到应用实践
当下,数据中台概念火热,但业界对于何谓数据中台,如何进行中台建设意见不一。如何拨开中台建设背后的迷雾,开启对于企业而言意义深远的数字化战略之路?作为数据智能领域的专家,每日互动(个推)CTO叶新江开启了一场有关数据中台的深度分享,从概念定义、价值赋能、战略理论、落地实践等方面层层剖析,旨在帮助大数据、数字化领域以及相关行业从业者梳理出一个聚焦当下、增能未来的中台建设新路径。
407 0
|
存储 城市大脑 供应链
数据中台的一些基本概念和方法论
疫情期间,为了响应教育部“停课不停学、停课不停教、停课不停研”的号召,给多所高校进行了线上直播分享,其中一个主题就是关于数据中台的一些基本概念和构建数据中台过程中需要用到哪些方法论。
2712 0
数据中台的一些基本概念和方法论
|
新零售 搜索推荐 数据挖掘
新零售企业如何借助全域数据中台方法论进行自有用户洞察
作者:柯根 更多内容详见数据中台官网 https://dp.alibaba.com 一、前言 完善的数据分析体系,是企业数字化转型必备的基础,企业在发展过程中,无论规模、性质如何,都离不开对用户(顾客/客户)的洞察,在新零售行业更是如此。
1985 0
新零售企业如何借助全域数据中台方法论进行自有用户洞察
|
人工智能 Oracle 大数据
数据中台建设方法论实践之数据架构演变案例
最近十年,随着互联网、物联网、人工智能的新发展,大数据技术开始兴起,为了让政府机构和企业能够更加灵活高效地使用自己的数据,将数据分析和挖掘出来的结果应用在企业的决策、营销、管理等各个方面,让数据产生更多的价值,其实是需要一整套体系作支撑的,其中数据架构就是支撑的重要一环
1154 0
数据中台建设方法论实践之数据架构演变案例
|
存储 SQL jstorm
数据中台建设方法论实践之技术选型
本文主要介绍面向ETL的数据存储和计算技术,面向数据查询分析的计算技术。
1942 0
|
数据采集 存储 设计模式
数据中台建设方法论实践之数据仓库建设
大数据时代的数据仓库有了一些新的变化,最大的变化数据数据量增加,数据来源更复杂之外,还有应用不仅仅用于支持管理决策,因此大数据时代的数据仓库的定义,需要发生一些变化,我把它重新定义为:大数据时代的数据仓库是一个面向主题的、集成的、相对全面的、反映历史变化的数据集合,用于支持管理决策和业务应用。
2092 0