作者:徐圆圆 更多内容详见数据中台官网 https://dp.alibaba.com
一、前言
完善的数据分析体系,是企业数字化转型必备的基础,企业在发展过程中,无论规模、性质如何,都离不开对用户(顾客/客户)的洞察,在新零售行业更是如此。全域数据中台能够提供:用户洞察数据模型、用户洞察分析、用户画像体系,帮助企业更加深入的了解用户,企业可以通过深度分析给用户提供更好的服务,建立客户关系管理,完善用户运营。
二、用户洞察
以往在企业中,通常是通过注册、消费来分析用户的状态,随着采集技术的发展以及大数据技术的支持,我们可以实现分析处理更多维度的数据,从而丰富企业自有数据库。通过OneId的建设,企业内数据可以实现串联,从而实现对用户行为较为完整的数据分析。
产品方面,通过数据中台产品Dataphin开发用户洞察相关的底层模型,再在Quick BI上做相关的数据分析,结合Quick Audience进行人群洞察圈选。
三、分析介绍
用户洞察分析,是企业全域数据中台企业自有数据应用分析的一部分,也是关键的部分。在用户洞察解决方案中,分析体系主要从三种分析框架入手,从不同的角度,帮助企业了解其用户资产。企业通过用户资产(用户生命周期角度)、用户旅程分析AIPL、用户价值RFM分析三种分析思路帮助企业从不同角度了解其用户资产,以适应不同场景下的分析需求。
企业可以选择某种分析方法或者多种方法组合,实现以下内容的分析与洞察:
- 用户的生命周期状态
- 不同生命周期用户的销售洞察
- 用户价值
- 用户行为
3.1 企业用户资产分析
“用户”是企业另一种形态的资产,我们从两方面了解用户的基本概况,首先是用户生命周期的划分,或者说是用户状态的划分,更加精细的用户划分可以将人群的特点分析更加全面,再有就是用户消费洞察,可以帮助企业了解用户处于不同状态下时对销售业绩的贡献,帮助企业进一步了解用户特点。
3.1.1 用户生命周期状态分析-FULL分析
我们从用户的互动时间长度结合互动深度做消费者的划分,从互动时长上划分准(潜)、新、老三种基本类型,从互动深度上划分出活跃、非活跃2种类型,相互交叉后,给出全新的用户生命周期状态定义。通过用户生命周期的划分,更加精细运营维护消费者资产。当一名用户与企业或者品牌等发生互动行为起,即可被认作为企业或品牌的潜在会员群体,成为拉新的目标群体。该用户消费以后,成为企业或品牌的活跃用户,直至用户流失。
企业或品牌可以结合报表分析指标和相应用户生命周期的标签画像,作出当下最为合适的运营决策。比如对新非活跃会员给予新人优惠券的发送,激活其成为活跃会员。
3.1.2 用户销售洞察
企业可以结合用户生命周期状态,对不同状态用户的消费进行探查,通过销售的基础指标如金额、件数、频次,了解当前用户消费概况。结合趋势、同环比等对当前的业务业绩进行进一步的洞察。从而制定更加合理的营销活动,圈选更加合适的营销人群。
销售洞察会分为多个分析:整体用户洞察、非会员销售洞察、(活跃)会员销售洞察、新活跃销售洞察、现期活跃销售洞察、持续活跃销售洞察、回归活跃销售洞察。由生命周期状态人群洞察,到用户销售洞察,企业可以将人群及其贡献更好的结合起来分析。对经营问题的诊断提供极大帮助。
3.2 AIPL分析
AIPL,把用户划分为认知、兴趣、购买、忠诚四个阶段,也被称作消费者旅程分析。用于帮助品牌将消费者根据不同的行为阶段进行分层管理,再依据不同的产品特性进行教育转化,是品牌管理中经典的消费者行为理论。此模型更关心的是消费者与企业的互动深入程度,可以从消费者跟品牌的忠实程度划分消费者资产,从这个角度对不同阶段的客户做不同的营销活动。
- A:Awareness 认知
- I:Interests 兴趣
- P:Purchase购买
- L:Loyalty 忠诚
用户的购物行为描述为从认知到兴趣,再从兴趣转化为购买,从购买转化为忠诚的一连串先后发生的过程,这一过程被称为消费者旅程。消费者可能会跳跃,比如从认知直接进入到购买,类似冲动型消费,或者从兴趣直接到忠诚。AIPL模型,可以帮助企业了解潜在用户有多少,忠诚客户有多少,以及各个环节的转化率。企业可以圈选出不同阶段的人群做相关的营销活动。
3.3 RFM分析
3.3.1 用户价值分析
用户价值的划分,是根据用户的购买行为对用户进行分类,通过购买行为中的购买时间、购买频次、购买金额三项指标来评估用户的价值,根据不同维度的划分将用户划分为不同类型。圈选出人群,做特定的营销活动推送,比如给予重要价值用户vip权益,提升用户忠诚度;给予重要发展用户一些满送活动,提升客户的购买兴趣,增加用户复购可能性等。
- R:用户最近一次购买时间
- F: 在企业定义周期内的的购买频次
- M:在企业定义周期内的购买金额
若把RFM各分2档,最终可以得到8种客户类型,分档后可以演化为RFM标签,可以针对不同企业制定不同的时间周期,也可针对需要设置或用其他分类名称。企业可以根据实际需要将RFM划分成更多的类型,比如只将R划分为3档,可以得到12种类型,如果都划分为3档,则是27种类型,但并非类型越多越好,企业还是按照实际运营来合理划分。
以RFM各分2档为例:
- 某周期内重要价值用户
- 某周期内重要潜力用户
- 某周期内重要深耕用户
- 某周期内新客户用户
- 某周期内重要唤回用户
- 某周期内一般维持用户
- 某周期内重要挽留用户
- 某周期内流失用户
3.3.2 用户复购分析
提供消费者复购分析,可以对一段时期内消费者频次进行分组或者筛选具体范围、数值对消费者的价值进行更深层次的挖掘。通过购买频次的划分,对于不同人群给予不同的营销策略,提升活跃度、忠诚度。
阿里巴巴数据中台团队,致力于输出阿里云数据智能的最佳实践,助力每个企业建设自己的数据中台,进而共同实现新时代下的智能商业!
阿里巴巴数据中台解决方案,核心产品:Dataphin,以阿里巴巴大数据核心方法论OneData为内核驱动,提供一站式数据构建与管理能力;
Quick BI,集阿里巴巴数据分析经验沉淀,提供一站式数据分析与展现能力;
Quick Audience,集阿里巴巴消费者洞察及营销经验,提供一站式人群圈选、洞察及营销投放能力,连接阿里巴巴商业,实现用户增长。
欢迎志同道合者一起成长!更多内容详见数据中台官网 https://dp.alibaba.com