如何看待LangChain与智能Agent,二者有什么区别

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain是一种专注于自然语言处理的框架,通过链式结构连接多个模型组件,实现复杂任务如问答、对话生成等。其六大核心组件包括模型、检索、代理、链、记忆和回调,帮助开发者快速构建基于大语言模型的应用。智能Agent则是一种能够感知环境、推理决策并采取行动的智能体,涵盖更广泛的智能行为,如自动驾驶、智能家居等。两者分别侧重于语言处理和全面智能行为的技术实现,为不同应用场景提供强大支持。

1、定义与核心功能

LangChain:

定义: LangChain是一种用于构建复杂语言模型的框架或方法,专注于自然语言处理(NLP)任务。
核心功能: 它通过链式结构连接多个模型或组件,实现更复杂的语言处理任务,如问答系统、对话生成、文本摘要等。
技术基础: 通常基于先进的NLP模型,如Transformer架构,利用多层神经网络处理语言数据。

智能Agent:

定义: 智能Agent是一种能够感知环境、推理、决策并采取行动的智能体。
核心功能: 它不仅限于语言处理,还涉及感知、推理、决策和执行等多个方面,适用于广泛的智能行为。
技术基础: 智能Agent可以结合多种技术,包括NLP、计算机视觉、强化学习等,以实现全面的智能行为。
LangChain六大核心组件:
模型(Models),检索(Retrieval),代理(Agents),链(Chains),记忆(Memory),回调(CallBack)
LangChain将提供各种组件和能力,像说明书和工具包,帮助开发者快速构建和优化基于大语言模型的各种应用

2. 应用范围

LangChain:

应用领域: 主要应用于需要复杂语言处理的场景,如智能客服、聊天机器人、信息检索等。
典型应用: 问答系统、对话生成、文本摘要、机器翻译等。

智能Agent:

应用领域: 涵盖更广泛的智能行为,包括但不限于语言处理、自主决策、环境交互等。
典型应用: 自动驾驶、智能家居、智能助手、游戏AI等。

3. 技术实现

LangChain:

技术实现: 侧重于语言模型的构建和优化,通过链式结构连接多个模型或组件,提升语言处理的复杂性和准确性。
关键组件: 包括语言模型、数据处理模块、推理引擎等,专注于语言数据的输入、处理和输出。

智能Agent:

技术实现: 涉及多种技术的整合,包括感知模块、推理引擎、决策算法、执行模块等,实现全面的智能行为。
关键组件: 包括传感器(用于感知环境)、处理器(用于推理和决策)、执行器(用于采取行动)等,适用于复杂的智能任务。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
1月前
|
运维 分布式计算 监控
Dataphin深度评测:企业级数据中台的智能实践利器
Dataphin是一款以全链路治理、智能提效和高兼容性为核心的企业级数据中台工具,特别适用于中大型企业的复杂数据场景。其流批一体能力、资源监控工具及行业化模板库可显著提升数据治理水平并降低运维成本。通过周期补数据功能,历史数据修复效率提升约60%;智能建模功能使建模时间缩短50%。尽管在数据源支持(如SAP HANA、DB2)和用户体验上仍有改进空间,但其强大的功能使其成为构建企业级数据中台的优选工具,尤其适合零售、金融等行业需要高效数据治理与实时分析的企业。
|
4天前
|
SQL 数据采集 分布式计算
Dataphin测评:企业级数据中台的「智能中枢」与「治理引擎」
Dataphin是一款智能数据建设与治理平台,基于阿里巴巴OneData方法论,提供从数据采集、建模研发到资产治理、数据服务的全链路智能化能力。它帮助企业解决数据口径混乱、质量参差等问题,构建标准化、资产化、服务化的数据中台体系。本文通过详细的操作步骤,介绍了如何使用Dataphin进行离线数仓搭建,包括规划数仓、数据集成、数据处理、运维补数据及验证数据等环节。尽管平台功能强大,但在部署文档更新、新手友好度及基础功能完善性方面仍有提升空间。未来可引入SQL智能纠错、自然语言生成报告等功能,进一步增强用户体验与数据治理效率。
72 26
Dataphin测评:企业级数据中台的「智能中枢」与「治理引擎」
|
17天前
|
存储 人工智能 自然语言处理
LangChain RAG入门教程:构建基于私有文档的智能问答助手
本文介绍如何利用检索增强生成(RAG)技术与LangChain框架构建基于特定文档集合的AI问答系统。通过结合检索系统和生成机制,RAG能有效降低传统语言模型的知识局限与幻觉问题,提升回答准确性。文章详细展示了从环境配置、知识库构建到系统集成的全流程,并提供优化策略以改进检索与响应质量。此技术适用于专业领域信息检索与生成,为定制化AI应用奠定了基础。
118 5
LangChain RAG入门教程:构建基于私有文档的智能问答助手
|
6月前
|
存储 人工智能 搜索推荐
解锁AI新境界:LangChain+RAG实战秘籍,让你的企业决策更智能,引领商业未来新潮流!
【10月更文挑战第4天】本文通过详细的实战演练,指导读者如何在LangChain框架中集成检索增强生成(RAG)技术,以提升大型语言模型的准确性与可靠性。RAG通过整合外部知识源,已在生成式AI领域展现出巨大潜力。文中提供了从数据加载到创建检索器的完整步骤,并探讨了RAG在企业问答系统、决策支持及客户服务中的应用。通过构建知识库、选择合适的嵌入模型及持续优化系统,企业可以充分利用现有数据,实现高效的商业落地。
294 6
|
6月前
|
Shell Docker 容器
LangChain-10(2) 加餐 编写Agent获取本地Docker运行情况 无技术含量只是思路
LangChain-10(2) 加餐 编写Agent获取本地Docker运行情况 无技术含量只是思路
50 4
LangChain-10(2) 加餐 编写Agent获取本地Docker运行情况 无技术含量只是思路
|
6月前
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
228 3
LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数
|
6月前
|
机器学习/深度学习 人工智能 开发框架
解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!
【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。
401 14
|
6月前
|
存储 自然语言处理 机器人
揭秘LangChain超能力:一键解锁与多元语言模型的梦幻联动,打造前所未有的智能对话体验!
【10月更文挑战第7天】LangChain是一个开源框架,旨在简化应用程序与大型语言模型(LLM)的交互。它提供抽象层,使开发者能轻松构建聊天机器人、知识管理工具等应用。本文介绍如何使用LangChain与不同语言模型交互,涵盖安装、环境设置、简单应用开发及复杂场景配置,如文档处理和多模型支持。
110 3
|
6月前
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
LangChain-15 Manage Prompt Size 管理上下文大小,用Agent的方式询问问题,并去百科检索内容,总结后返回
76 3
|
7月前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。这就是大型语言模型(LLM)能够做到的,比如 GPT-4,它就像是一套庞大的乐高积木套装,等待我们来发掘和搭建。
245 1

热门文章

最新文章

下一篇
oss创建bucket