Apache Flink 1.9.0版本新功能介绍

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 摘要:Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能。目前,Apache Flink 1.9.0版本已经正式发布,该版本有什么样的里程碑意义,又具有哪些重点改动和新功能呢?本文中,阿里巴巴高级技术专家伍翀就为大家带来了对于Apache Flink 1.9.0版本的介绍。

摘要:Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时,提供支持流处理和批处理两种类型应用的功能。目前,Apache Flink 1.9.0版本已经正式发布,该版本有什么样的里程碑意义,又具有哪些重点改动和新功能呢?本文中,阿里巴巴高级技术专家伍翀就为大家带来了对于Apache Flink 1.9.0版本的介绍。

演讲嘉宾介绍:

本次分享主要分为以下三个方面:

  1. Flink 1.9.0的里程碑意义
  2. Flink 1.9.0的重点改动和新功能
  3. 总结

一、Flink 1.9.0的里程碑意义

下图展示的是在2019年中阿里技术微信公众号发表的两篇新闻,一篇为“阿里正式向Apache Flink贡献Blink代码”介绍的是在2019年1月Blink开源并且贡献给Apache Flink,另外一篇为“修改代码150万行!Apache Flink 1.9.0做了这些重大修改!”介绍的是2019年8月Bink合并入Flink之后首次发版。之所以将这两篇新闻放在一起,是因为无论是对于Blink还是Flink而言,Flink 1.9.0的发版都是具有里程碑意义的。

在2019年年初,Blink开源贡献给Apache Flink的时候,一个要点就是Blink会以Flink的一个分支来支持开源,Blink会将其主要的优化点都Merge到Flink里面,一起将Flink做的更好。如今,都已经过去了半年的时间,随着Flink1.9.0版本的发布,阿里巴巴的Blink团队可以骄傲地宣布自己已经兑现了之前的承诺。因此,当我们结合这两篇报道来看的时候,能够发现当初Blink的一些新功能如今已经能够在Flink1.9.0版本里面看到了,也能看出Flink社区的效率和执行力都是非常高的。

二、Flink 1.9.0的重点改动和新功能

这部分将为大家介绍Flink 1.9.0的重点改动和新功能。

架构升级
整体而言,如果一个软件系统产生了较大改动,那基本上就是架构升级带来的,对于Flink而言也不例外。想必熟悉Flink的同学对于下图中左侧的架构图一定不会陌生,在Flink的分布式流式执行引擎之上有一整套相对独立的DataStream API和DataSet API,它们分别负责流计算作业和批处理作业。在此基础之上Flink还提供了一个流批统一的Table API和SQL,用户可以使用相同的Table API或者SQL来描述流计算作业和批处理作业,只需要在运行时告诉Flink引擎以流模式运行还是以批模式运行即可,Table层将会把作业优化成为DataStream作业或者DataSet作业。但是Flink 1.8版本的架构在底层存在一些弊端,那就是DataStream和DataSet在底层共享的代码并不多。其次,两者的API也完全不同,因此就会导致上层重复开发的工作量比较大,长期来看就会使得Flink的开发和维护成本越来越大。

基于上述问题,Blink在架构上进行了一些新型的探索,经过和社区密切的讨论之后确定了Flink未来的架构路线。也就是在Flink未来的版本中,DataSet的API会被完全移除掉,SteamTransformation会作为底层的API来描述批作业和流作业,Table API和SQL会将流作业都翻译到SteamTransformation上,所以在Flink 1.9中为了不影响使用之前版本用户的体验,还需要一种能够让新旧架构并存的方案。基于这个目的,Flink的社区开发人员也做了一系列努力,提出了上图中右侧的Flink 1.9架构设计,将API和实现部分做了模块的拆分,并且提出了一个Planner接口,能够支持不同的Planner具体实现。Planner的具体工作就是优化和翻译成物理执行图等,也就是Flink Query Processor所做的工作。Flink将原本的实现全部移动到了Flink Query Processor中,将从Blink Merge过来的功能都放到了Blink Query Processor。这样就能够实现一举两得,不仅能够使得Table模块拆分之后变得更加清晰,更重要的是也不会影响老版本用户的体验,同时能够使得用户享受到Blink的新功能和优化。

Table API & SQL 重构和新功能

在Table API & SQL 重构和新功能部分,Flink在1.9.0版本中也Merge了大量从Blink中增加的SQL功能。这些新功能都是在阿里巴巴内部经过千锤百炼而沉淀出来的,相信能够使得Flink更上一层台阶。这里挑选了一些比较重要的成果为大家介绍,比如对于SQL DDL的支持,重构了类型系统,高效流式的TopN,高效流式去重,社区关注已久的维表关联,对于MinBatch以及多种解热点手段的支持,完整的批处理支持,Python Table API以及Hive的集成。接下来也会简单介绍下这些新功能。

SQL DDL:在以前如果要注册一个Source或者Table Sink,必须要通过Java、Scala等代码或者配置文件进行注册,而在Flink 1.9版本中则支持了SQL DDL的语法直接去注册或者删除表。

重构类型系统:在Flink 1.9版本中实现了一套全新的数据类型系统,这套全新的类型系统与SQL标准进行了完全对齐,能够支持更加丰富的类型。这套全新的类型系统也为未来Flink SQL能够支持更加完备和完善的功能打下了坚实的基础。

TopN:在Flink 1.9版本提供强大的流处理能力以及社区期待已久的TopN来实时计算排行榜,能够实时计算排名靠前的店铺或者进行实时流数据的过滤。

高效流式去重:在现实的生产系统中,很多ETL作业或者任务没有做到端到端的一致性,这就导致明细层可能存在重复数据,这些数据交给汇总层做汇总时就会造成指标偏大,进而多计算了一些值,因此在进入汇总层之前往往都会做一个去重,这里引入了一个流计算中比较高效的去重功能,能够以比较低的代价来过滤重复的数据。

维表关联:能够实时地关联MySQL、HBase、Hive表中数据。

MinBatch&多种解热点手段:在性能优化方面,Flink 1.9版本也提供了一些性能优化的手段,比如提升吞吐的MinBatch的优化以及多种解热点手段。

完整的批处理支持:Flink 1.9版本具有完整的批处理支持,在下一个版本中也会继续投入力量来支持TBDS达到开箱即用的高性能。

Python Table API:在Flink 1.9版本中也引入了Python Table API,这也是Flink在多语言方向的有一个重大进步。能够使得Python用户能够轻松地玩转Flink SQL这样的功能。

Hive集成:Hive是Hadoop生态圈中不可忽视的重要力量,为了更好地去推广Flink批处理的功能,与Hive进行集成也是必不可少的。很高兴,在Flink 1.9版本的贡献者中也有两位Hive的PMC来推动集成工作。而首先需要解决的就是Flink如何读取Hive数据的问题,目前Flink已经完整打通了对于Hive MetaStore的访问,Flink可以直接去访问Hive MetaStore中的数据,同时反过来Flink也可以将其表数据中的元信息直接存储到Hive MetaStore里面供Hive访问,同时我们也增加了Hive的Connector支持CSV等格式,用户只需要配置Hive的MetaStore就能够在Flink直接读取。在此基础之上,Flink 1.9版本还增加了Hive自定义函数的兼容,Hive的自定义函数都能够在Flink SQL里面直接运行。

批处理改进:细粒度批作业恢复(FLIP-1)

Flink 1.9版本在批处理部分也做了较多的改进,首要的就是细粒度批作业的恢复。这个优化点在很早之前就被提出来了,而在1.9版本里终于将未完成的功能实现了收尾。在Flink 1.9版本中,如果批处理的作业有错误发生,Flink会首先计算这个错误影响的范围,这称为Fault Region,因为在批处理作业中有一些节点需要通过Pipeline的数据进行传输,而其他的节点可以通过Blocking的方式先把数据存储下来,下游再去读取存储下来的数据,如果算子的输出已经进行了完整的保存,那就没有必要将这个算子重新拉起来运行了,这样就使得错误恢复被控制在一个相对较小的范围里面。如果再极端一点,在每个数据Shuffle的地方都进行数据落盘,这就和MapReduce的Map行为比较类似了,不过Flink支持更加高级的用法,用户可以自行控制每个Shuffle的地方通过网络进行直连还是通过文件落盘的方式进行传输,这也是Flink的一个核心不同点。

有了文件Shuffle之后,大家也会想是否能够将这个功能插件化,使其能够将文件Shuffle到其他地方,目前社区也在针对于这个方向做相应的努力,比如可以用Yarn做Shuffle的实现或者做一个分布式服务对于文件进行Shuffle。在阿里内部已经实现了这种架构,实现了单作业处理百TB级别的作业。当Flink具备这种插件化机制以后,就能够轻松地对接更加高效和灵活的Shuffle,让Shuffle这个批处理里面老大难的问题得到较好的解决。

流处理改进:State Processor API(FLIP-43)

流处理一直都是Flink的核心,所以在Flink 1.9版本里面也在流处理方面提出了很多改进,增加了一个非常实用的功能叫做Sate Processor API,其能够帮助用户直接访问Flink中存储的State,API能够帮助用户非常方便地读取、修改甚至重建整个State。这个功能的强大之处在于几个方面,第一个就是灵活地读取外部的数据,比如从一个数据库中读取自主地构建Savepoint,解决作业冷启动问题,这样就不用从N天前开始重跑整个数据。

此外,借助State Processor API,用户可以直接分析State中的数据,因为这部分数据在之前一直属于黑盒,这里面存储的数据是对是错,是否存在异常都用都无从得知,当有了State Processor API之后,用户就可以像分析普通数据一样来分析State数据,进而检测异常和分析故障。第三点就是对于脏数据的订正,比如有一条脏数据污染了State,就可以用State Processor API对于状态进行修复和订正。最后一点就是状态迁移,但用户修改了作业逻辑,还想要复用原来作业中大部分的State,或者想要升级这个State的结构就可以用这个API来完成相应的工作。在流处理面很多常见的工作和问题都可以通过Flink 1.9版本里面提供的State Processor API解决,因此也可以看出这个API的应用前景是非常广泛的。

重构的Web UI

除了上述功能的改进之外,Flink 1.9.0还提供了如下图所示的焕然一新的Web UI。这个最新的前端UI由专业Web前端工程师操刀,采用了最新的AngularJS进行重构。可以看出最新的Web UI非常的清新和现代化,也算是Apache开源软件里面自带UI的一股清流。

三、总结

经过紧锣密鼓的开发,Flink 1.9.0不仅迎来了众多的中国开发者,贡献了海量的代码,也带来了很多的用户。从下图可以看出,无论是从解决issue数量还是从代码commit数量上来看,Flink 1.9.0版本超过了之前两个版本的总和。从代码修改行数来看,Flink 1.9.0达到了150万行,是之前版本的代码修改行数的大约6倍,可以说Flink 1.9.0是Flink开源以来开发者最为活跃的一个版本。从Contributor数量上也可以看出,Flink也吸引了越来越多的贡献者,并且其中很多的贡献者都来自于中国。此外,根据Apache官方所发布的开源项目活跃指标来看,Flink的各项指标也都名列前茅。

从这一切都能够看出,Flink 1.9.0是一个开始,在未来无论是Flink的功能还是生态都会变得越来越好。我们也由衷地希望更多的开发者能够加入Flink开发社区,一起将Flink做的越来越好。

今年11月底将会在北京召开全球最大的Apache Flink官方会议,届时将会有两千余名开发人员参加,希望大家可以关注。

此外,Apache Flink极客挑战赛正在举办中,感兴趣的同学可以关注。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
13天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
297 33
The Past, Present and Future of Apache Flink
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
851 13
Apache Flink 2.0-preview released
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
92 3
|
17天前
|
SQL 存储 Apache
Apache Doris 3.0.3 版本正式发布
亲爱的社区小伙伴们,Apache Doris 3.0.3 版本已于 2024 年 12 月 02 日正式发布。该版本进一步提升了系统的性能及稳定性,欢迎大家下载体验。
|
1月前
|
Dubbo 安全 应用服务中间件
Apache Dubbo 正式发布 HTTP/3 版本 RPC 协议,弱网效率提升 6 倍
在 Apache Dubbo 3.3.0 版本之后,官方推出了全新升级的 Triple X 协议,全面支持 HTTP/1、HTTP/2 和 HTTP/3 协议。本文将围绕 Triple 协议对 HTTP/3 的支持进行详细阐述,包括其设计目标、实际应用案例、性能测试结果以及源码架构分析等内容。
|
2月前
|
前端开发 Java API
Apache Seata(incubating) 首个版本重磅发布!
2.1.0 是 Seata 进入 Apache 基金会的第一个 Release Version。此次发布将 io.seata 包名更改为 org.apache.seata。除了按原有的 Roadmap 技术演进外,2.1.0 进行了大量兼容性工作,实现了 API、数据和协议的兼容。用户无需修改原有的 API 和配置,即可实现到 Apache 版本的平滑升级。
125 16
Apache Seata(incubating) 首个版本重磅发布!
|
1月前
|
SQL 存储 Java
Apache Doris 2.1.7 版本正式发布
亲爱的社区小伙伴们,**Apache Doris 2.1.7 版本已于 2024 年 11 月 10 日正式发布。**2.1.7 版本持续升级改进,同时在湖仓一体、异步物化视图、半结构化数据管理、查询优化器、执行引擎、存储管理、以及权限管理等方面完成了若干修复。欢迎大家下载使用。
|
2月前
|
存储 SQL 缓存
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
从 3.0 系列版本开始,Apache Doris 开始支持存算分离模式,用户可以在集群部署时选择采用存算一体模式或存算分离模式。基于云原生存算分离的架构,用户可以通过多计算集群实现查询负载间的物理隔离以及读写负载隔离,并借助对象存储或 HDFS 等低成本的共享存储系统来大幅降低存储成本。
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
|
3月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。

推荐镜像

更多