机器学习之卷积神经网络(一)

简介: 对于计算机视觉应用来说,你肯定不想它只处理小图片,你希望它同时也要能处理大图。为此,你需要进行卷积计算,它是卷积神经网络中非常重要的一块。

计算机视觉(Computer vision)
深度学习与计算机视觉可以帮助汽车,查明周围的行人和汽车,并帮助汽车避开它们。还使得人脸识别技术变得更加效率和精准,我们可以体验到通过刷脸就能解锁手机或者门锁的便捷。当你解锁了手机,手机上一定有很多分享图片的应用。在上面,可以看到美食,酒店或美丽风景的图片。有些公司在这些应用上使用了深度学习技术来向大家展示最为生动美丽以及与我们最为相关的图片。机器学习甚至还催生了新的艺术类型。

首先,计算机视觉的高速发展标志着新型应用产生的可能,这是几年前,人们所不敢想象的。通过学习使用这些工具,可以创造出新的产品和应用。

其次,即使到头来未能在计算机视觉上有所建树,但人们对于计算机视觉的研究是如此富有想象力和创造力,由此衍生出新的神经网络结构与算法,这实际上启发人们去创造出计算机视觉与其他领域的交叉成果。

图片分类(图片识别)

比如给出这张64×64的图片,让计算机去分辨出这是一只猫。

_1

还有一个例子,在计算机视觉中有个问题叫做目标检测,比如在一个无人驾驶项目中,你不一定非得识别出图片中的物体是车辆,但你需要计算出其他车辆的位置,以确保自己能够避开它们。所以在目标检测项目中,首先需要计算出图中有哪些物体,比如汽车,还有图片中的其他东西,再将它们模拟成一个个盒子,或用一些其他的技术识别出它们在图片中的位置。注意在这个例子中,在一张图片中同时有多个车辆,每辆车相对与你来说都有一个确切的距离。
_2
_3

还有一个更有趣的例子,就是神经网络实现的图片风格迁移,比如说你有一张图片,但你想将这张图片转换为另外一种风格。所以图片风格迁移,就是你有一张满意的图片和一张风格图片,实际上右边这幅画是毕加索的画作,而你可以利用神经网络将它们融合到一起,描绘出一张新的图片。它的整体轮廓来自于左边,却是右边的风格,最后生成下面这张图片。这种神奇的算法创造出了新的艺术风格,所以在这门课程中,你也能通过学习做到这样的事情。

但在应用计算机视觉时要面临一个挑战,就是数据的输入可能会非常大。举个例子,在过去的课程中,你们一般操作的都是64×64的小图片,实际上,它的数据量是64×64×3,因为每张图片都有3个颜色通道。如果计算一下的话,可得知数据量为12288,所以我们的特征向量$x$维度为12288。这其实还好,因为64×64真的是很小的一张图片。
_4

如果你要操作更大的图片,比如一张1000×1000的图片,它足有1兆那么大,但是特征向量的维度达到了1000×1000×3,因为有3个RGB通道,所以数字将会是300万。如果你在尺寸很小的屏幕上观察,可能察觉不出上面的图片只有64×64那么大,而下面一张是1000×1000的大图。
_5

如果你要输入300万的数据量,这就意味着,特征向量$x$的维度高达300万。所以在第一隐藏层中,你也许会有1000个隐藏单元,而所有的权值组成了矩阵 $W^{[1]}$。如果你使用了标准的全连接网络,就像我们在第一门和第二门的课程里说的,这个矩阵的大小将会是1000×300万。因为现在$x$的维度为$3m$,$3m$通常用来表示300万。这意味着矩阵$W^{[1]}$会有30亿个参数,这是个非常巨大的数字。在参数如此大量的情况下,难以获得足够的数据来防止神经网络发生过拟合和竞争需求,要处理包含30亿参数的神经网络,巨大的内存需求让人不太能接受。

但对于计算机视觉应用来说,你肯定不想它只处理小图片,你希望它同时也要能处理大图。为此,你需要进行卷积计算,它是卷积神经网络中非常重要的一块。

以上内容参考安全牛课堂 机器学习与网络安全 第4章节 卷积神经网络

相关文章
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出卷积神经网络(CNN)的奥秘
【9月更文挑战第3天】在人工智能的浪潮中,卷积神经网络(CNN)无疑是最耀眼的明星之一。本文将通过浅显易懂的语言,带你一探CNN的核心原理和应用实例。从图像处理到自然语言处理,CNN如何改变我们对数据的解读方式?让我们一起走进CNN的世界,探索它的魅力所在。
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】在人工智能的璀璨星空中,卷积神经网络(CNN)如同一颗耀眼的星辰,以其卓越的图像处理能力在深度学习领域熠熠生辉。本文将带你领略CNN的魅力,从其结构原理到实战应用,深入浅出地探索这一技术的奥秘。我们将通过Python代码片段,一起实现一个简单的CNN模型,并讨论其在现实世界问题中的应用潜力。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
10天前
|
机器学习/深度学习 安全 算法
利用机器学习优化网络安全防御策略
【8月更文挑战第30天】在信息技术迅猛发展的今天,网络安全问题日益突显,传统的安全防御手段逐渐显得力不从心。本文提出一种基于机器学习的网络安全防御策略优化方法。首先,通过分析现有网络攻击模式和特征,构建适用于网络安全的机器学习模型;然后,利用该模型对网络流量进行实时监控和异常检测,从而有效识别潜在的安全威胁;最后,根据检测结果自动调整防御策略,以提升整体网络的安全性能。本研究的创新点在于将机器学习技术与网络安全防御相结合,实现了智能化、自动化的安全防御体系。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】在人工智能的浪潮中,深度学习以其强大的数据处理能力成为时代的宠儿。本文将引导你走进深度学习的核心组件之一——卷积神经网络(CNN),并带你一探其背后的奥秘。通过简明的语言和直观的代码示例,我们将一起构建一个简易的CNN模型,理解它在图像处理领域的应用,并探索如何利用Python和TensorFlow实现它。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
9天前
|
安全 Apache 数据安全/隐私保护
你的Wicket应用安全吗?揭秘在Apache Wicket中实现坚不可摧的安全认证策略
【8月更文挑战第31天】在当前的网络环境中,安全性是任何应用程序的关键考量。Apache Wicket 是一个强大的 Java Web 框架,提供了丰富的工具和组件,帮助开发者构建安全的 Web 应用程序。本文介绍了如何在 Wicket 中实现安全认证,
20 0
|
9天前
|
机器学习/深度学习 自动驾驶 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】 本文旨在通过浅显易懂的方式,引导初学者步入卷积神经网络(CNN)的神秘世界。我们将从CNN的基础概念出发,逐步深入到其在图像处理中的应用实例,最后通过一个简单的Python代码示例,展示如何实现一个基础的CNN模型。无论你是编程新手还是深度学习领域的初探者,这篇文章都将为你打开一扇了解和掌握CNN的大门。
|
9天前
|
机器学习/深度学习 数据采集 TensorFlow
从零到精通:TensorFlow与卷积神经网络(CNN)助你成为图像识别高手的终极指南——深入浅出教你搭建首个猫狗分类器,附带实战代码与训练技巧揭秘
【8月更文挑战第31天】本文通过杂文形式介绍了如何利用 TensorFlow 和卷积神经网络(CNN)构建图像识别系统,详细演示了从数据准备、模型构建到训练与评估的全过程。通过具体示例代码,展示了使用 Keras API 训练猫狗分类器的步骤,旨在帮助读者掌握图像识别的核心技术。此外,还探讨了图像识别在物体检测、语义分割等领域的广泛应用前景。
|
9天前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】 在探索人工智能的奥秘时,我们常常被其背后的复杂算法所迷惑。本文旨在以浅显易懂的语言,带你走进深度学习的世界,特别是卷积神经网络(CNN)这一核心概念。我们将一起了解CNN的基本结构,它是如何工作的,以及为什么它在图像识别领域如此强大。通过简单的代码示例,你将学会如何搭建一个简单的CNN模型,并在自己的数据集上进行实验。无论你是编程新手还是深度学习初学者,这篇文章都将为你打开一扇通往高级人工智能应用的大门。
|
9天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)原理与实践
【8月更文挑战第31天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力脱颖而出。本文将深入浅出地探讨卷积神经网络(CNN)这一核心组件,解析其在图像识别等领域的应用原理,并通过Python代码示例带领读者步入实践。我们将从CNN的基本概念出发,逐步深入到架构设计,最后通过一个简易项目展示如何将理论应用于实际问题解决。无论你是深度学习的初学者还是希望深化理解的实践者,这篇文章都将为你提供有价值的洞见和指导。
|
9天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)入门指南
【8月更文挑战第31天】本文旨在通过简明的语言和直观的代码示例,引导初学者理解并实践卷积神经网络(CNN)的基础概念。我们将从CNN的基本结构出发,逐步深入到构建一个简单的CNN模型,并在流行的深度学习框架TensorFlow中实现它。文章将用通俗易懂的方式解释复杂的技术概念,帮助读者建立起对CNN工作原理的初步认识,同时提供足够的信息以鼓励进一步的探索和学习。