【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题

简介: 本文是关于2022-2023年知能科技公司机器学习算法工程师岗位的秋招笔试题,包括简答题和编程题,简答题涉及神经网络防止过拟合的方法、ReLU激活函数的使用原因以及条件概率计算,编程题包括路径行走时间计算和两车相向而行相遇时间问题。

岗位:高级机器学习算法工程师
笔试时间:2022-9-28

1 简答题

1、神经网络中防止过拟合的方法

(1)降低模型复杂度

(2)正则化 ,正则化正是通过在损失函数上添加额外的参数稀疏性惩罚项(正则项),来限制网络的稀疏性,以此约束网络的实际容量,从而防止模型出现过拟合。L1正则化是将权值的绝对值之和加入损失函数,使得权值中0值比重增大,因此得到的权值较为稀疏。L2正则化是将权重的平方之和加入损失函数,使得权值分布更加平均,所以权值较为平滑。

(3)Dropout舍弃,在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃,使得每次训练的网络结构多样。

2、为什么使用relu激活函数

(1)可以使网络训练更快。

相比于sigmoid、tanh,导数更加好求,反向传播就是不断的更新参数的过程,因为其导数不复杂形式简单。

(2)增加网络的非线性。
本身为非线性函数,加入到神经网络中可以是网格拟合非线性映射。

(3)防止梯度消失。
当数值过大或者过小,sigmoid,tanh的导数接近于0,relu为非饱和激活函数不存在这种现象。

(4)使网格具有稀疏性。
由于小于0部分为0,大于0部分才有值,所以可以减少过拟合。

3、x1,x2∈{0,1},y∈{1,2,3,4,5,6,7,8,9,10},已知p(Y=y) = $\frac{y}{10}$,$P(x_1=1|Y=y) = \frac{y}{10}$,$¶(x_2=1|Y=y)=\frac{y}{540}$,求$ P(y∣x_1​=0,x_2​=1) ?$

在这里插入图片描述

2 编程题

来自题目:Testing Round #16 (Unrated) C. Skier

1、题意: 给一个字符串,N,S,W,E,分别代表上下左右。当走过一个没有走过的边时,花费5秒,如果走过这个边,则花费1秒。(注意:判断的是两点之间的距离,不是单纯的点).给你他的行动轨迹,求消耗的时间。

例子1

NNN
15

例子2

NS
6

例子3

WWEN
16

例子4

WWEE
12

例子5

NWNWS
25

https://blog.csdn.net/moasad/article/details/105991386
(2)解析
将每条路径的两个端点坐标存储起来,使用元组来存储两个坐标,注意一条线段的两个坐标是有两个方向。

direction = {
    'N':(0,1),
    'S':(0,-1),
    'E':(-1,0),
    'W':(1,0)

}
x,y= 0,0
ans = 0
path = 'WWEN' # 输出16
# path ='NWNWS' # 输出25
# x1,y1线段的当前坐标,x,y表示线段的另一个坐标。
visit = set([(0,0,0,0)])
for p in path:
    dx,dy = direction[p]
    x1,y1 = x+dx,y+dy

    if (x1,y1,x,y) in visit or (x,y,x1,y1) in visit:
        ans +=1
    else:
        ans+=5
    # 存储线段,线段的两个坐标,两个方向都要存储
    visit.add((x1,y1,x,y))
    visit.add((x,y,x1,y1))
    x,y =x1,y1 
print(ans)

2、路径长度为l,有 a i a_i ai​个路径点,两辆车分别从路径的两端开始,以1个单位的速度相向而行,每当一辆车经过路径点,它的速度提高一个单位每秒,求两辆车会多少秒后相遇?

目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
4月前
|
机器学习/深度学习 人工智能 算法
【数据挖掘】2022年2023届秋招奇虎360机器学习算法工程师 笔试题
本文提供了奇虎360公司2022年秋招机器学习算法工程师岗位的笔试题内容,包括选择题和编程题,涉及概率统计、数据结构、机器学习、计算机组成原理等多个领域。
98 5
|
4月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】2022年2023届秋招宏瓴科技公司机器学习算法工程师 笔试题
关于宏瓴科技有限公司2022-2023年秋招机器学习算法工程师岗位的笔试题目及作者个人对部分题目的解答尝试,涉及贝叶斯误差和贝叶斯最优分类器的概念、贝叶斯误差的重要性和估算方法,以及如何有效利用训练集和测试集进行深度学习模型训练的数据集划分策略。
61 4
|
4月前
|
算法 数据挖掘 索引
【数据挖掘】2022年2023届秋招Kanaries雾角科技算法岗 笔试题
本文介绍了2022年Kanaries雾角科技算法岗位的笔试题目,涵盖了LeetCode和牛客网的题目,包括字符串处理、几何问题、矩阵操作、数组搜索、二叉树遍历、幂运算及概率计算等多种算法题目,并提供了部分题目的Python代码实现。
60 1
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
23天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
22天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。