【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题

简介: 本文是关于2022-2023年知能科技公司机器学习算法工程师岗位的秋招笔试题,包括简答题和编程题,简答题涉及神经网络防止过拟合的方法、ReLU激活函数的使用原因以及条件概率计算,编程题包括路径行走时间计算和两车相向而行相遇时间问题。

岗位:高级机器学习算法工程师
笔试时间:2022-9-28

1 简答题

1、神经网络中防止过拟合的方法

(1)降低模型复杂度

(2)正则化 ,正则化正是通过在损失函数上添加额外的参数稀疏性惩罚项(正则项),来限制网络的稀疏性,以此约束网络的实际容量,从而防止模型出现过拟合。L1正则化是将权值的绝对值之和加入损失函数,使得权值中0值比重增大,因此得到的权值较为稀疏。L2正则化是将权重的平方之和加入损失函数,使得权值分布更加平均,所以权值较为平滑。

(3)Dropout舍弃,在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃,使得每次训练的网络结构多样。

2、为什么使用relu激活函数

(1)可以使网络训练更快。

相比于sigmoid、tanh,导数更加好求,反向传播就是不断的更新参数的过程,因为其导数不复杂形式简单。

(2)增加网络的非线性。
本身为非线性函数,加入到神经网络中可以是网格拟合非线性映射。

(3)防止梯度消失。
当数值过大或者过小,sigmoid,tanh的导数接近于0,relu为非饱和激活函数不存在这种现象。

(4)使网格具有稀疏性。
由于小于0部分为0,大于0部分才有值,所以可以减少过拟合。

3、x1,x2∈{0,1},y∈{1,2,3,4,5,6,7,8,9,10},已知p(Y=y) = $\frac{y}{10}$,$P(x_1=1|Y=y) = \frac{y}{10}$,$¶(x_2=1|Y=y)=\frac{y}{540}$,求$ P(y∣x_1​=0,x_2​=1) ?$

在这里插入图片描述

2 编程题

来自题目:Testing Round #16 (Unrated) C. Skier

1、题意: 给一个字符串,N,S,W,E,分别代表上下左右。当走过一个没有走过的边时,花费5秒,如果走过这个边,则花费1秒。(注意:判断的是两点之间的距离,不是单纯的点).给你他的行动轨迹,求消耗的时间。

例子1

NNN
15

例子2

NS
6

例子3

WWEN
16

例子4

WWEE
12

例子5

NWNWS
25

https://blog.csdn.net/moasad/article/details/105991386
(2)解析
将每条路径的两个端点坐标存储起来,使用元组来存储两个坐标,注意一条线段的两个坐标是有两个方向。

direction = {
    'N':(0,1),
    'S':(0,-1),
    'E':(-1,0),
    'W':(1,0)

}
x,y= 0,0
ans = 0
path = 'WWEN' # 输出16
# path ='NWNWS' # 输出25
# x1,y1线段的当前坐标,x,y表示线段的另一个坐标。
visit = set([(0,0,0,0)])
for p in path:
    dx,dy = direction[p]
    x1,y1 = x+dx,y+dy

    if (x1,y1,x,y) in visit or (x,y,x1,y1) in visit:
        ans +=1
    else:
        ans+=5
    # 存储线段,线段的两个坐标,两个方向都要存储
    visit.add((x1,y1,x,y))
    visit.add((x,y,x1,y1))
    x,y =x1,y1 
print(ans)

2、路径长度为l,有 a i a_i ai​个路径点,两辆车分别从路径的两端开始,以1个单位的速度相向而行,每当一辆车经过路径点,它的速度提高一个单位每秒,求两辆车会多少秒后相遇?

目录
相关文章
|
4月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
5月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
213 6
|
7月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
8月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1424 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
8月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
209 14
|
7月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
132 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
9月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
239 2
|
10月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
218 1

热门文章

最新文章